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Abstract  In this paper, a neural network based predictive controller is designed for controlling the liquid level of 
the coupled tank system. The controlled process is a nonlinear system; therefore, a nonlinear prediction method can 
be a better match in a predictive control strategy. The neural network predictive controller that is discussed in this 
paper uses a neural network model of a nonlinear plant to predict future plant performance. The simulation results 
are compared with PID control. The results show that the effectiveness of using the neural predictive controller for 
the coupled tank system. The Simulink Toolbox in MATLAB has been used to simulate the controlled system with 
the proposed controller. The VHDL has been used to describe the implementation of neural controller. Xilinx ISE 
Project Navigator Version 10.1 is used to obtain the compilation and timing test results as well as the synthesized 
design. The hardware implementation of the neural network predictive controller using FPGA board is proposed. To 
make sure that the FPGA board works like the simulated neural predictive controller, MATLAB programme is used 
to compare between the set of the data that are obtained from the ModelSim program and the set of the data that are 
obtained from the MATLAB Simulink model. Simulation results show that the FPGA board can be used as neural 
predictive controller for controlling the liquid level of the coupled tank system. 
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1. Introduction 
The coupled-tank liquid level control system is 

regarded as the relevant plant to emulate the process 
control in petrol and chemical industries. The processing 
plants in these industries largely involve in controlling the 
liquid level and the flow rate from one tank to another in 
the presence of nonlinearity and disturbance. 

Many authors investigated the problem of controlling 
liquid flow of single or multiple tanks. The neurofuzzy 
controller based on the radial basis function neural 
network is tuned automatically using genetic algorithm to 
design a control system for the coupled tank [1]. In 
reference [2], the direct model reference adaptive control 
is designed for coupled tank system. While, an iterative 
learning control is used to tune an adaptive neurofuzzy 
inference system inverse controller for tank system [3]. 
Khan and Spurgeon presented a second order sliding mode 
control algorithm for a class of MIMO nonlinear system. 
This algorithm has been applied for robust control of 
liquid level in interconnected twin-tanks [4]. Intelligent 
control including fuzzy control [5,6], neural network 
control [7], and genetic algorithms [8] have also been 
applied to the coupled tanks system.  

Model predictive control (MPC) is used successfully in 
some practical application since it was developed in 1980s 

[9]. The most popular MPC algorithms that found a wide 
acceptance in industry are: Dynamic Matrix Control 
(DMC), Model Algorithmic Control (MAC), Predictive 
Functional Control (PFC), Extended Prediction Self 
Adaptive Control (EPSAC), Extended Horizon Adaptive 
Control (EHAC) and Generalized Predictive Control 
(GPC). GPC has been originally developed with linear 
plant predictor model, which leads to a formulation that 
can be solved analytically. But in many industrial 
processes which usually have nonlinear dynamical 
behaviours and such complicated systems may be not 
easily to control by the linear GPC method. In recent years, 
incorporation of neural networks as intelligent control 
techniques and adaptive control system has been claimed 
to be a new method for the control of systems with 
significant nonlinearities. Those neural network based 
adaptive control system is called neural network predictive 
control (NNPC). It is widely used as a controller for many 
nonlinear systems [10,11,12,13,14]. In this work, a neural 
network predictive controller is designed for controlling 
the liquid level of the coupled tank system.  

The special-purpose VLSI chips is used to implement 
the NNPC in real time applications with enhanced 
processing speed, but due to different neural models and 
limited use, it has been prohibitively expensive and time 
consuming to develop such chips. In this paper, the 
network predictive control is mapped into hardware using 
field programmable gate array FPGA board to design a 
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control system for coupled tank level. A Very High speed 
integrated circuit Hardware Description Language (VHDL) 
codes have been used to describe the operation of the 
NNPC. The Xilinx Integrated Software Environment 
(Xilinx ISE 10.1) has been used as environment to type 
the VHDL codes. The Xilinx Spartan XC3S500E FPGA 
board has been suggested to use in this work. The Spartan 
3E starter Kit board highlights the unique features of the 
Spartan_3E FPGA family and provides a convenient 
development board for embedded processing applications. 
The Hirose 100-pin FX2 Edge connector (J3) can be used 
as input and output port to receive the digital input error 
data from the A/D converter (error signal is the difference 
between the output of the controlled system and desired 
output) and send the digital control signal to the D/A 
converter. The analogue control signal is used to force the 
output of the controlled system to follow the desired 
output. 

For the simulation results, ModelSim XE III 6.4b 
simulation program will be used with the FPGA-based 
design. In order to compare the responses of FPGA design 
with the Simulink design, an M-file will be used to plot 
the data collected from the ModelSim program and the 
other data collected from the Simulink design to make 
sure the FPGA boards work like the neural network 
predictive controller for coupled tank system. Simulation 
results show that the FPGA board can be used as neural 
predictive controller for controlling the liquid level of the 
coupled tank system. 

2. Dynamic Model of the Two Tank System 
The coupled tank system is shown in Figure 1. It 

consists of two identical hold-up tanks coupled by an 
orifice. The input is supplied by a variable speed pump 
which supplies liquid to the first tank. The orifice allows 
the liquid to flow into the second tank and hence out to a 
reservoir. The control task is to adjust the inlet flow rate 
q(t) by pumping the liquid into the first tank so as to force 
the level of the liquid in the second tank, h2k close to a 
desired set point level, H. It is assumed that the back 
pressure created by the water-head of the second tank does 
not affect the flow rate of the pump significantly. The 
controller has been designed based on the neural 
predictive control. 

 

Figure 1. Two Tanks System 

2.1. System Modelling 

The twin-connected tanks system is a nonlinear 
dynamical system and the governing dynamical equations 
can be written as  

 ( ) ( )12
1 1 2 1 2

12 sgn
ah g h h h h q
A A

= − − − +  (1) 

 ( ) ( )12 2
2 1 2 1 2 22 sgn 2

a ah g h h h h g h
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where 1h  is the level in the first tank; 

2h  is the level in the second tank; 

1q  is the flow rate from the first tank to the second tank; 

2q  is the flow rate from the second tank to a reservoir;  
q  is the inlet flow rate; 
g is the gravitational constant;  
A is the cross-section area of first tank and second tank; 
a2 is the cross-section area of the outlet orifice; 
a12 is the cross-area of the coupled orifice. 

2.2. System Constraints 
The pump can only pump the water into the first thank, 

therefore, the inlet flow rate q is always positive. The 
constraint on the inlet flow rate is given by 

 0q ≥  (3) 

In the steady state, for constant water level set points , 
the respective derivatives must be zero separately i.e., 

 1 2 0h h= =   (4) 

At the steady state, Equation. 1 and Equation 2 cab be 
rewritten as 

 ( ) ( )12
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a g h h h h Q
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= − − − +  (5) 
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where Q is the steady state inflow rate. From Equation 5 
and Equation 6, to satisfy the constrain in Equation 3, the 
following constrain should be satisfy as 

 1 2h h≥  (7) 

3. Neural Network Predictive Control 
To design the neural network predictive control, two 

steps should be carried out: 
•  Determine the neural network plant model for the 

given nonlinear system (system identification). 
•  The neural network plant model is used by the 

controller to predict future performance. 
The following subsection described the steps design of 

the NNPC. 

3.1. Nonlinear System Modeling Using Neural 
Networks 

System identification is the process of developing a 
mathematical model of a dynamic system based on the 
input and output data from the actual process. An 
important stage in control system design is the 
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development of a mathematical model of the system to be 
controlled. Previous studies in system identification have 
demonstrated that neural networks are successful in 
modelling many non-linear systems [13]. Before neural 
networks are investigated for identification, linear 
techniques such as auto regressive with exogenous input 
(ARX) and auto regressive moving average with 
exogenous input (ARMAX) will be applied to nonlinear 
system. 

The model of any nonlinear system in the form of 
NARMA is given as  
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where f(.) represents an unknown nonlinear system, d 
represented the time delay of the system, ny and nu are the 
orders of the system. For an unknown model plant, many 
forms of NN model can be applied. In this work, the 
multilayer perceptron neural network is used to model the 
nonlinear system as shown in Figure 2. The neural 
network design to identify the plant is expressed as 
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Figure 2. Nonlinear system identification 

Where  ( )y t is the output of the neural network system, lu  
represents the lth input of the neural network; jv , w, b1 

and b2 are the weights and biases of the NN (the 
adjustable parameters of the NN); F(.) and g(.) are 
nonlinear functions ; q and m are the number of the nodes 
in the hidden and input layer, respectively. 

The adjustable parameters of the NN are determined 
from a set of examples through the process called training. 
The examples, or the training data as they are usually 
called, are a set of inputs, u(t), and corresponding desired 
outputs, y(t). 

Specify the training set by 

 ( ){ }, ( ) | 1, ,NZ u t y t t N= = …    (10) 

where N is the number of the samples in training set. 
The objective of training is then to determine a 

mapping from the set of training data to the set of possible 
weights. Therefore, the neural network will produce 

predictions  ( )y t , which in some sense are “close” to the 
true outputs y(t) 

Because the training of neural network is often operated 
off-line, any training algorithms in batch version can be 
developed to minimize the following criterion 
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where θ  is the trainable parameters vector. 
The weights are then found as arg min NVθ = . By some 

kind of iterative minimization scheme: 

 ( ) ( )1 ( ) ( )i i i iSθ θ µ+ = +  (12) 

Where ( )iθ  specified the current iterate; ( )iS is the search 
direction; and ( )iµ  the step size. 

A large number of training algorithms exist, each of 
which is characterized by the way in which search 

 



 American Journal of Electrical and Electronic Engineering 43 

direction and step size are selected. The MATLAB Neural 
toolbox provides a lot of training algorithms such as: 
Backpropagation algorithm, Variable Learning Rate 
algorithm, Resilient Backpropagation algorithm, 
Conjugate Gradient algorithm, Quasi-Newton Algorithm, 
Levenberg-Marquardt algorithm, and Reduced Memory 
Levenberg-Marquardt algorithm. 

3.2. Predictive Controller 
The objective of the predictive control strategy using 

neural predictors is twofold: (i) to estimate the future 
output of the plant and (ii) to minimize a cost function 
based on the error between the predicted output of the 
processes and the reference trajectory. The cost function, 
which may be different from case to case, is minimized in 
order to obtain the optimum control input that is applied to 
the non-linear plant. In most of the predictive control 
algorithms a quadratic form is utilized for the cost 
function: 
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with following requirements:  

 ( ) 21 0,1 <uu k i N i N∆ + − = ≤ ≤  (14) 

where Nu is the control horizon; N1 is the minimum 
prediction horizon; N2 is the prediction horizon; i is the 
order of the predictor; r is the reference trajectory; ρ is 
weight factor; and ∆ is the differentiation operator. 

The command u may be subject to amplitude 
constraints 

 min max( )u u k i u≤ + ≤  (15) 

The cost function is often used with the weight factor 
0ρ = . A very important parameter in the predictive 

control strategy is the control horizon uN , which 
specifies the instant time, since when the output of the 
controller should be kept at a constant value. 

The output sequence of the optimal controller is 
obtained over the prediction horizon by minimizing the 
cost function PJ  with respect to the vector U. This can be 
achieved by setting 

 ( )0 ( ),..., 1 TP
u

J U u k d u k d N
U

∂
 = = − − + − ∂

 (16) 

The analytical approach to the optimization problem 
needs for the differentiation of the cost function and, 
finally, leads to a nonlinear algebraic equation; 
unfortunately this equation cannot be solved by any 
analytic procedure. This is why a computational method is 
preferred for the minimization of the cost function, also 
complying with the typical requirements of the real-time 
implementations (guaranteed convergence, at least to a 
sub-optimal solution, within a given time interval). Figure 
3 depicts the structure of the NNPC. The controller 
consists of the neural network plant model and the 
optimization block. The optimization block determines the 
values of u' that minimize PJ , and then the optimal u is 
inputted to the plant (nonlinear system). 

 

Figure 3. Structure of neural network predictive control 

4. Hardware Implementation of the 
Neural Predictive Control 

During the last years, consumer digital devices have 
been built using either application specific hardware 
modules (ASICs) or general purpose software 
programmed microprocessors, or a combination of them. 
Hardware implementations offer high speed and efficiency 
but they are tailored for a specific set of computations. If 
an alternative implementation is needed, a new and 
expensive design process has to be performed. On the 
contrary, software implementations can be modified freely 

during the life-cycle of a device, through patches and 
updates. However, they are much more inefficient in terms 
of speed and area. Reconfigurable computing is intended 
to fill the gap between hardware and software, achieving 
potentially much higher performance than software, while 
maintaining a higher level of flexibility than hardware. 
Reconfigurable devices, including Field-Programmable 
Gate Arrays (FPGAs), contain an array of computational 
elements whose functionality is determined through 
multiple programmable configuration bits. These elements, 
usually called logic blocks, are connected using a set of 
routing resources that are also programmable. 

 



44 American Journal of Electrical and Electronic Engineering  

Neural networks can be implemented using analogy or 
digital systems. The digital implementation is more 
popular as it has the advantage of higher accuracy, better 
repeatability, lower noise sensitivity, better testability, 
higher flexibility, and compatibility with other types of 
pre-processors. Two implementation methods can be used 
to implement the NNPC: (i) FPGA implementation; and 
(ii) DSP implementation. FPGA is a suitable hardware for 
neural network implementation as it preserves the parallel 
architecture of the neurons in a layer and offers flexibility 
in reconfiguration. 

The VHDL coding developed is tested using Xilinx 
10.1 software tool to design the NNPC. This software is 
synthesised the VHDL codes and generated a 
configuration file that used to program the FPGA board. 
The ModelSim 6.4b software tool is used to simulate the 
output response of the FPGA boards. The same NNPC is 

designed and simulated using MATLAB software tool. 
This Software-Based Controller (SBC) will be used to 
make a comparison with the proposed design. This 
comparison is important because it tells us to which extent 
our FPGA-Based Controller (FBC) is close to similar 
controller designed as a computer program. 

5. Simulation and Results 
In this work, the Simulink Toolbox is used to simulate 

the NNPC and coupled tank system. Figure 4 depicts the 
MATLAB Simulink model of coupled tank system. While, 
Figure 5 shows the connection between NNPC and 
coupled tank system. 

 

Figure 4. MATLAB Simulink model of coupled tank system 

 

Figure 5. MATLAB Simulink model of NNPC with coupled tank system 

As it is mentioned before, to design the neural network 
predictive control, two steps should be carried out: 
•  Determine the neural network plant model for the 

given nonlinear system (system identification). 
•  The neural network plant model is used by the 

controller to predict future performance. 
To carry out the first step, the neural network is used to 

design the identification system for the coupled tank 
system. The training data should be generated by applying 
a random step inputs to the coupled tank Simulink model. 
Figure 6 shows the input/output data set that is used to 
design the neural network identifier. 

The Levenberg-Marquardt Algorithm (LMT) is an 
iterative technique that locates the minimum of a 

multivariate function expressed as the sum of squares of 
nonlinear real-valued functions. It has become a standard 
technique for nonlinear least-squares problems [15], 
widely adopted in a broad spectrum of disciplines. 

To design the NN identifier, we assume that it has four 
inputs (y(t-1),y(t-2),u(t-1)) and u(t-2) and one output  ( )y t . 
The size on hidden layer is assumed seven.  

In this work, the Levenberg-Marquardt algorithm is 
used as training algorithm to adjust the trainable 
parameters of the NN. After 166 optimization iteration 
steps, the objective function NV  has been minimized to 
very small value as shown in Figure 7. 
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Figure 6. Input/output data training set 

 

Figure 7. Objective Function during optimization steps 

The optimization problem was addressed in accordance 
with the computational scenario built in Subsection 3.1. 
With respect to the notations introduced in Subsection 3.1, 
the following concrete values were chosen for the tuning 
parameters of the predictive control algorithm: N1=1, 
N2=10, Nu=5, and ρ  =0.05. The NNPC is generated the 
suitable control signal to force the liquid level of the 
second tank to track the reference input signal. In this 
work, the random step input is used as the reference input 
signal. In order to investigate the effectiveness of the 
neural network based predictive controller, the output 
response of the controlled system with NNPC is compared 
with output response of the controlled system with PID 
controller as shown in Figure 8. The Internal model 
control theory is used to design the PID controller. Figure 
8 shows that the overshoot and settle time of the output 
response are minimized. 

 

Figure 8. the output response of the coupled tank system with different 
control system 

After the design of neural network predictive controller 
has been completed, the FPGA board can be used to 
implement the proposed control system. First, VHDL 
codes, which describe the operation of NNP controller, are 
written (the flowchart of VHDL program is shown in 
Figure 9). This program is downloaded into the FPGA 
chip (XILINX Spartan XC3S700AN) by using USB cable. 
Then, the Hirose 100-pin FX2 Edge connector (one port of 
the FPGA board) can be used to connect the FPGA board 
with the tank system. The error between the reference 
input and the system output can be applied as input to the 
A/D converter.  The digital output of the A/D converter 
has been applied as input data to the FPGA boards. The 
FPGA board generates digital inputs to the NNP controller 
(error and error rate).  The NNP controller generates a 
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suitable digital control signal based on the program that is 
stored in the FPGA chip. The digital control signal is sent 
to the D/A convertor to generate an analogy control signal 
which is applied as input to the pump of tank system. 
Figure 10 shows the control signal obtained from 
ModelSim program, while, Figure 11 shows the output 
signal of the NNP controller obtained from MATLAB 
simulation. By comparing Figure 10 and Figure 11, it can 
be seen that, the two output signals are identical. 

 

Figure 9. the flowchart of describe the Neural network using VHDL 

 

Figure 10. Control signal obtained from FPGA Board 

 

Figure 11. Control signal obtained from MALAB Simulation 

6. Conclusion 
The neural network based predictive control is 

proposed in this paper for controlling the liquid level of 
the nonlinear coupled tank system. Using the neural 
predictive controller, the liquid level of the second tank is 
tracked the desired set points by applying the liquid flow 
rate as a control signal. The Levenberg-Marquardt training 
algorithm is used to design the neural network identifier 
which is used to design the predictive control. To 
investigate the effectiveness of the neural network based 
predictive controller, the output response of the coupled 
tank with the NNPC is compared with the response of the 
controlled system with PID controller. Simulation results 
show that when the proposed controller is applied, all 
transient response specification such as: maximum 
overshoot, settling time delay time, rise time and peak 
time have been minimized. It means the NNPC can be 
used effectively to implement the control system for the 
coupled tank system practically. The obtained adjustable 
parameters of the NN can be used to implement the 
controller using an FPGA board. The results show that the 
control signals obtained from FPGA boards are identical 
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to the control signals which are obtained from design 
simulation. Therefore, it can be arrived that the FPGA 
boards can be used to control the coupled tank system. 
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