
American Journal of Electrical and Electronic Engineering, 2015, Vol. 3, No. 1, 13-16
Available online at http://pubs.sciepub.com/ajeee/3/1/3
© Science and Education Publishing
DOI:10.12691/ajeee-3-1-3

An Approach for Fast BCD Addition

Parag K. Lala
*

Department of Electrical Engineering, Texas A&M University-Texarkana, Texarkana, USA

*Corresponding author: plala@tamut.edu

Received December 18, 2014; Revised March 03, 2015; Accepted March 12, 2015

Abstract This paper presents a technique for fast addition of multi-digit BCD numbers. The addition of all

columns can be performed simultaneously, and the carry values are utilized only in the final stage of the addition.

Thus the traditional carry propagation process is drastically reduced, hence speeding up the addition process. The

addition technique is used in the summation of partial products generated during a new multiplication approach

proposed in the paper resulting in a faster multiplication.

Keywords: 2’s complement binary number, overflow, multi-digit BCD addition, partial product

Cite This Article: Parag K. Lala, “An Approach for Fast BCD Addition.” American Journal of Electrical and

Electronic Engineering, vol. 3, no. 1 (2015): 13-16. doi: 10.12691/ajeee-3-1-3.

1. Introduction

Binary coded decimal (BCD) can represent decimal

numbers 0 to 9 in 4-bit binary equivalents. Figure 1 shows

unpacked BCD representations of decimal digits.

Unpacked BCD representation allows only one decimal

digit per byte. This means that in an unpacked
representation of any BCD number the upper four bits are

zero. It is possible to pack two decimal digits into a single

byte; this is known as packed BCD representation. The

value of each 4-bit can range from 0 to 9 although a 4-bit

data allows value from 0 to 15. The addition of unpacked

or packed BCD numbers follows the general rule of binary

addition. If during the addition process an invalid BCD

number is produced or a carry is generated then an

adjustment is necessary to correct the sum. This is

traditionally done by adding 6 to the sum [1].

Figure 1. Unpacked BCD representation

The use of decimal arithmetic in commercial and

financial data processing has been on the rise in recent

years [2]. This is in spite of the simplicity and efficiency

of binary number based computing systems. In such a

system, the decimal data has to be converted to binary first,

and after the data processing task has been completed the

resulting binary data is reconverted to decimal format.

However, the conversion between decimal and binary

formats introduces significant delay to the computation

task [3]. Furthermore, binary representation of certain

decimal fractions require unacceptably high number of

bits for accurate representation; an approximate

representation of fractions compromises the accuracy of

the final result [4]. The BCD representation of decimal

fractions avoids errors in representing and calculating
such values. The conversion of a BCD number for display

is a simple digit by digit mapping that can be done in

linear time. Furthermore in the BCD representation of a

number, adding a new digit to the number requires just

appending a 4-bit data to the BCD number. The

disadvantages of BCD compared to typical binary

representations are a small increase in the complexity of

the circuits needed to implement basic arithmetic

operations and less efficient usage of storage.

Several techniques have been proposed in recent years

for faster BCD adder design [5,6,7]. This paper presents a
new way to design fast BCD adder. Initially all BCD

digits are assigned binary values such that half of them

receive positive values and the other half get negative

values; these values are not the same as the binary patterns

used to represent each decimal digit in BCD. The sum of

two BCD digits obtained are adjusted (if necessary) based

on the overflow bit (if one is generated) and the sign bit of

the sum. The next BCD digit in the list of addends is then

added to this partial sum; this process is continued till all

the BCD digits in list are used. and the composite sum and

the associated carry bits are stored.

If multiple columns of BCD digits are to be added, the
digits in each individual column are added simultaneously

and the resulting sum and carry patterns are added in such

a way that the final result as well as intermediate addition

results are automatically in BCD format, no additional

adjustments are necessary.

A system based on BCD representations of decimal

fractions avoids errors representing and calculating such

values. The conversion of a BCD number for display is a

14 American Journal of Electrical and Electronic Engineering

simple digit by digit mapping that can be done in linear

time. Furthermore in the BCD representation of numbers

adding a new 4-bit data to the BCD representation of the

original number. The disadvantages of BCD compared to

typical binary representations are a small increase in the

complexity of the circuits needed to implement basic

arithmetic operations and less efficient usage of storage.

This paper presents a new way to design fast BCD
adder. Initially all BCD digits are assigned binary values

such that half of them receive positive values and the other

half get negative values; these values are not the same as

the binary patterns used to represent each decimal digit in

BCD. The sum of two BCD digits obtained are adjusted

(if necessary) based on the overflow bit (if one is

generated) and the sign bit of the sum. The next BCD digit

in the list of addends is then added to this partial sum; this

process is continued till all the BCD digits in list are used.

and the composite sum and the associated carry bits are

stored. If multiple columns of BCD digits are to be added,
the digits in each individual column are added

simultaneously and the resulting sum and carry patterns

are added in such a way that the final result as well as

intermediate addition results are automatically in BCD

format, no additional adjustments are necessary.

2. New Technique for BCD Addition

The proposed approach is different from the traditional

way of sum generation; each number in a column of

decimal digits is replaced first as indicated in Figure 2.

Notice that the numbers 1 to 5 are represented by their

binary values. The binary representations of the rest of the

numbers i.e. 6, 7, 8 and 9 are derived by subtracting 10
from each, and the resulting negative numbers -4, -3, -2

and -1 respectively are replaced by their 2’s complement

binary representations.

Figure 2. Conversion of decimal numbers to signed binary

Before formally presenting the proposed the BCD

summation technique let us illustrate the carry and the

sum generation by performing the following addition:

6 + 3 + 4 + 7.

The decimal values are first replaced by their binary
equivalents using Figure 2.

The sum of 6 and 3 is 1111 which is 9 as indicated in

Figure 2. Next 4 (0100) is added to 1111 resulting in

1,0011 i.e. 13. Finally, 7 (1101) is added to this partial

sum resulting 10,0000 which is 20 in BCD. In general

while adding BCD digits based on this approach we need

to consider both the carry bit and possible overflow

resulting during each stage of the addition process. An

overflow occurs if the carry-in to the sign (most
significant) bit is different from the carry-out of the sign

bit. In the addition example illustrated above no overflow

flow was generated at any stage. In most instances, the

partial sum generated need to be adjusted based on the

carry out bit and/or the overflow bit generated during the

partial sum generation process. We need to consider four

possible cases:

Case i. Overflow and sign bit of sum is 0 i.e. sum is

positive

Case ii. Overflow and sign bit of sum is 1 i.e. sum is

negative
Case iii. No overflow and sign bit of sum is 0

Case iv. No overflow and sign bit of sum is 1

Case i can arise only if the first two bits of an addend

are 10 and the first two bits of the other addend are also 10

or 11. Since none of the numbers in Figure 1 have 10 as

the first bits this situation may arise only during the

summation of two numbers at an intermediate stage.

Case ii is possible only when the first two bits of both

addends are 01 (e.g. when 4 and 5 are added together, or 4

added to 4 or 5 added to 5).

Case iii is possible only when an addend with first two
bits 01 are added to an addend with first two bits 11 (e.g.

when 4 and 6 are added together).

Case iv arises only if the first two bits of one addend

are 11 and those of the other addend are also 11 or 00.

Algorithm for BCD addition

Step 1. Replace each decimal digit in a column by its

binary equivalent using Figure 2.
Step 2. Add the first two binary numbers in a column to

generate a partial sum; as indicated previously this may need

to be adjusted based on the carry out bit and/or the overflow
bit generated during the partial sum generation process.

Choose one of the following options based on the status

of the overflow and the sign bit:

Case i. Overflow =Yes, Sum = Positive Add 1010 to

the sum and ignore carry resulted from this addition i.e. no

changes in the original carry bits are necessary.

Case ii. Overflow = Yes, Sum = Negative
Add 0110 to the result to adjust the sum..

Case iii. Overflow = No, Sum = Positive

No adjustment to the partial sum is needed.

Case iv. Overflow = No, Sum = Negative

Add 1010 to adjust the sum and ignore the carry bit i.e.

there no changes to the carry bits that existed before the

adjustment.

Step 3. Add the carry bits of each column to the sum

bits of its left column. This operation can be carried out

simultaneously for all columns.

Step 4. The resulting carry and sum bits are added as in
step iv.

Step 5. Repeat step 4 till no carry bits are generated

during a summation. The resulting sum is the final result

of the addition

To illustrate the algorithm let us perform the addition of

the following BCD numbers in a single column

 American Journal of Electrical and Electronic Engineering 15

Let us first add 7 and 8; the corresponding binary

numbers as shown in Table 1 are

Thus the actual sum is 0011 0000 i.e. decimal 30.

As another example let us add the following BCD

numbers

The replacement of the digits in each column is as

indicated in Figure 1. The individual sum of

The final sum of the addition is derived as follows:

Replacing each 4-bit binary number(shown in bold) by
its equivalent decimal value results in sum of 3611 in

BCD.

3. An Approach for Fast Multiplication

In this section we present a technique for multiplication.

It utilizes the addition technique introduced earlier for the

summation of partial products that are generated during

the multiplication process, thereby significantly speeding

up the multiplication process.

Let us illustrate the multiplication process by

multiplying X= xn-1 xn-2 ….. x0 by M = mn-1 mn-2 ….. m0.

The multiplication of X by mn-1, mn-2 etc. can be carried

out simultaneously. The intermediate product resulting

from multiplying X by mn-1 is recorded as follows:

digit of the two-digit product term, and 0 ≤ ri ≤ 9 and 0 ≤

si ≤ 9.

Next the first digit of each term is added to the second

digit of its previous term as shown below:

This process of adding si-1 to ri-2 to is continued till each

sum is a single digit. The partial product terms are then

rearranged as follows and added using the addition

technique proposed in section 2.

As an example let us perform 899 × 678. The result of

multiplying 899 by 6 is as shown below As an example let

us perform 899 × 678.

The result of multiplying 899 by 6 is as shown below

The next step is to add the first digit of each term to the

second digit of its previous term as discussed above:

Similarly the results of multiplying 899 by 7 is

and by 8 is

16 American Journal of Electrical and Electronic Engineering

These partial products can be derived in parallel, and

are then added as shown below

4. Conclusion

This paper presents an approach for fast addition of
multi-digit BCD numbers. It assigns both positive and

negative binary numbers to the BCD digits. The sum of

each column of BCD digits are generated in parallel; the

sum and the associated carry bits are then added together

using minimum number of additional steps to obtain the

final sum. The addition of all columns can be performed

simultaneously, and the carry values are utilized only in

the final stage of the addition. Thus the traditional carry

propagation process is drastically reduced, thereby

significantly improving the speed of adder operation. It is

also shown that the BCD addition approach presented here

can be efficiently utilized to add the partial product terms

generated during the multiplication process of two multi-

digit numbers.

References

[1] P. K. Lala, Principles of Modern Digital Design, John Wiley &

Sons, 2007.

[2] M.F. Cowlishaw, “Decimal floating-point: algorism for

computers”,. Proc. 16th IEEE Symposium on Computer

Arithmetic, pp. 104-111, June 2003.

[3] W.Buchholz., “Fingers or Fists? (The Choice of Decimal or

Binary Representation)”, Communications of the ACM, 2 (12), pp.

3-11, December 1959.

[4] T.B. Juang, H.H. Peng, H.L. Kuo, “Parallel and digit-serial

implementations of area-efficient 3-operand decimal adders”,

International Journal of Soft Computing and Engineering (IJSCE),

vol. 3, issue 5, pp. 177-182, November 2013.

[5] C.Sundaresan, C.V.S. Chaitanya, P.R. Venkateswaran, S.Bhatt

and J. Mohan Kumar, “High speed BCD adder”, Proc. 2011 2nd

International Congress on Computer Applications and Computer

Science, Advances in Intelligent and Soft Computing. Vol. 145, pp.

113-116, 2012.

[6] A. Bayrakci and A. Akkas, “Reduced delay BCD adder”, Proc..

IEEE 18th Int. Conf. on Application-specific Systems,

Architectures and Processors, (ASAP), pp. 266-271, July 2007.

[7] A. Vazquez and E. Antelo, "A high-performance significant BCD

adder with IEEE 754-2008 decimal rounding," Proc. 19th IEEE

Symposium on Computer Arithmetic (ARITH-19), pp. 135-144,

2009.

