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Abstract  In determining the properties and inductance of ferromagnetic core inductor, hysteresis modeling is of 
high importance. Many models are available to investigate those characteristics but they tend to be complex and 
difficult to implement. In this paper, we report a new mathematical model based on the experimental data of 
hysteresis for ferromagnetic core inductor. The proposed model can restore the hysteresis curve with a little RMS 
error. We used the model to determine analytically the expression of the current in a RL series circuit forced by an 
alternating source. A good agreement is found between our theoretical and experimental results. 
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1. Introduction 
Magnetic materials are used in electrical power devices 

such as transformers, motors and generators. They are also 
present in measurement and control of electrical power for 
actuators and sensors, contactors and relays. Another 
application field is found to be in the magnetic recording 
industry, either by analog or digital, as in audio and video 
recording or in the storage of data information on 
magnetic disks and tapes for computer applications. The 
purpose of a magnetic material core in an inductor is to 
produce by a given applied field, a higher flux compared 
to the flux produced in air, and to form a magnetic path 
for the flux. 

In general, all electrical circuit elements respond in a 
nonlinear fashion to any form of electrical input. However, 
simple passive elements, such as resistors, capacitors, and 
air core inductors, respond to a first order approximation 
nearly linearly. But in devices that have ferromagnetic 
cores, the relationship between the flux density and the 
magnetic field strength in the magnetic core is nonlinear. 
This nonlinear relationship depends on several factors, 
such as the chemical constitution and structure of the 
magnetic material, technological process, the way the 
material is worked and applied. The nonlinear 
characteristic of the magnetic material is irreversible, 
hence exhibits hysteresis. 

The ferromagnetic cores are basic constructive elements 
of transformers and inductors for wide application area, 
ranging from analog and digital microelectronics toward 

power converters and power systems. It is known that the 
rigorous study and design optimization of such 
electromagnetic devices is difficult because of 
nonlinearity, electromagnetic inertial behavior and other 
related phenomena, as saturation, anisotropy, magnetic 
hysteresis and induced eddy currents. 

Hysteresis is a wide research topic in science and 
engineering. Mathematicians, physicists and engineers 
have proposed numerous models to describe that 
phenomenon [1-9]. They are generally fully analytic 
models based on certain physical theories like Weiss, 
Preisach or Jiles-Atherton, often restricted to particular 
applications [10,11,12]. Some apparently accurate models 
are inadequate when used in circuit simulation because of 
discontinuities which can provoke severe convergence 
problems and therefore, alter the simulation results. For 
many known models used in circuit simulators [13,14], it 
is difficult to identify the correct correspondence between 
the model parameters and the real device ones. However, 
all indicates that this research topic is still far from being 
fully exploited and that it is difficult to find the ultimate 
solution and a universal model. This has been and seem to 
remain a long-term challenge for researchers [15,16]. 

There are basically three approaches in the modeling of 
inductance nonlinearity that include hysteresis. The first 
approach looks at the physical properties of the material: 
domain alignments, wall movements, spin rotations, etc 
[17,18]. The second approach prefers a macroscopic 
description of hysteresis using mathematical models to 
predict the B - H  curve but without completely 
neglecting the physics of the material [19]. The third 
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approach needs the equivalent circuit to be modeled in 
existing computer programs [20,21]. 

Thus, the merit of the model developed in this work is 
that it defines the complex requirements of the particular 
modeling approach that provides a solution to this 
problem with excellent accuracy. 

The method of analysis used in this research is a 
combination of direct harmonic domain approach, the 
Harmonic Balance Method, orthogonalized polynomials 
and piecewise approximations. It employs the 
methodology that analyzes the influence of all significant 
factors in more detail and it includes the representation of 
hysteresis. The modeling procedure has a wide range of 
generality, being suitable to be extended to transformers, 
linear actuators and rotating motors. 

The paper is organized as follows: in Section 2, the 
measurement method is briefly described and the 
mathematical models are given. Next we analyze the 
dynamical behavior of a circuit containing a resistor and a 
ferromagnetic core inductor forced by an alternating 
generator in Section 3. In Section 4, theoretical and 
experimental results are presented and the paper is 
concluded with some remarks in Section 5. 

2. Measurement Method and Mathematical 
Models 

2.1. Measurement Methods 
The relation between magnetic induction and magnetic 

field in ferromagnetism can be presented with a hysteresis 
loop. Several methods of measurement are commonly 
applied for the recording of hysteresis loop of 
ferromagnetic materials, such as Roland’s and Juing’s 
method [22] for measuring with direct current, and 
oscilloscope measuring method which employs AC 
current. 

The AC method requires extensive preparation for the 
measurement procedure, such as the calibration of the 
oscilloscope and a proper selection of the components in 
the secondary electric circuit. In addition, measurement 
results cannot be stored in an easy and simple way in the 
proper format. For this measurement, we will use the DC 
method applied to the connection scheme shown in Figure 1. 

 
Figure 1. Connection scheme for recording hysteresis loop. 

When the current I  measured by the ammeter is 
proportional to the strength of the magnetic field H , the 

magnetic induction B  is directly measured using a 
teslameter. 

The hysteresis loop we obtained is shown in the graph 
of Figure 2. It is a three steps illustration. Step one 
represented by circles corresponds to the variation of the 
power supply from 0  V to 2+  V. Without switching off 
the circuit, but varying back the power supply from 2+  V 
to 2−  V, then forth from 2−  V to 2+  V, we obtain the 
second step (triangles) respectively the third depicted by 
squares. 

 
Figure 2. Experimental recorded data (circles, triangles and squares) and 
splitting (solid line) B - I  curves 

2.2. Mathematical Model of Hysteresis 
Just by considering the shapes of the curves formed by 

the triangles and squares points, we describe the relation 
between the magnetic induction and the magnetic field in 
the following form: 

 0= tanh with = .
2s

H dHB H B sign
dt

α σµ σ β−   +    
   

 (1) 

sB , α  and β  are parameters to be determined and the 
step function ( )sign x  is defined as 

 ( )
1 if > 0

= 0 if = 0
1 if < 0

x
sign x x

x




−

 (2) 

0µ  is the permeability of free space. One can notice that, 
for the part of the hysteresis loop with triangles points, H  
or I  is decreasing, then =σ β−  and for the other part, 
H  is increasing, means that =σ β . The relation between 
magnetic induction and current can be obtained by taking 
into account the Ampere law: =H NI , where   is the 
average length of the magnetic material and 1= 2N N  is 
the total number of turns. Under this relation, equation (1) 
becomes 

 0= tanh with = .
2 2s

NI NI dIB B sign
dt

µ α σ σ β   + −   
    

(3) 

At this stage, the saturation flux density can be obtained 
from our recorded data and we found that = 130sB  mT. 
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The values of α  and β  can be obtained by using the means 
square method. For the following parameters of our used 
inductor = 24 cm, the cross sectional area = 176.71A mm 2  
and 1 = 500N  we obtain 488.22 10α −⋅ m 1A−⋅  and 

288.42 10β −⋅ . Using these values, the curves we 
obtained are shown in the graph of Figure 2 with solid line. 
The results show a good agreement between the 
experimental values and our mathematical model. 

Since ferromagnetic materials are generally 
characterized by three parameters: the remanence ( rB ), 
the coercive magnetic field ( cH ) and the saturation flux 
density sB , we found general relations between them and 
the coefficients α  and β  in the following form: 

 0

0

1= ln , = ln .s r s c s r

c s r s c s r

B B B H B B
H B B B H B B

µ
α β

µ
   + − +

⋅   − + −   
(4) 

2.3. Mathematical Model of Ferromagnetic 
Core Inductance 

The ferromagnetic core inductance model is obtained 
through the relation = =LI BNAφ  where A  is the cross 
sectional area of the magnetic material and φ  the 
magnetic flux through the magnetic material. We then 
obtain 

 = .BNAL
I

 (5) 

Since we have two expressions for B  (see equation 
(3)), we will use the average of the B - I  curves. 
Consequently, the inductance of an inductor that contains 
a ferromagnetic material has the following expression: 

 

2
0=

2

tanh tanh .
2 2 2 2

sN A B NA
L

I
NI NI

µ

α β α β

+ ×

    − + +        



 

 (6) 

For illustration, the experimental result with circles and 
dashed line and the theoretical result with solid line are 
plotted in Figure 3. 

 
Figure 3. Experimental recorded data (dashed line) and splitting (solid 
line) L - I  curves. 

The experimental values are computed using equation 
(5) with the recorded values of I  and B . We have 
increased the supply voltage from 0V  to 2V  but the first 
value of I  we recorded is 1 mA. Also here, there is a 
good agreement between experimental and theoretical 
results as the experimental curve fluctuates slightly around 
the theoretical one. 

Regarding the shape of the curve, this result is similar 
to those obtained experimentally by the authors of 
references [23,24]. One can also notice from our model 
that the inductance of a ferromagnetic core inductor lies 
between two values. The maximum value iL  and the 
minimum value fL  are obtained for very small values of 
current ( = 0I A) and for infinite values of current 
respectively. Their expressions are given as follows: 

 
( )

2 2
0 0

0
= 1 and = .

1 cosh
s

i f
N A B N A

L L
µ α µ

µ β
 
+ 

+   

 (7) 

From expressions of iL  and fL , we can deduce the 
initial relative permeability and the final relative 

permeability respectively as 
( )0

1
1 cosh

sBα
µ β

+
+

 and 1 . 

This is a very interesting confirmation of our model since 
it is known that the relative permeability of a 
ferromagnetic material is greater than one. 

3. Dynamics of a Circuit Containing a 
Resistor in Series with a Ferromagnetic 
Core Inductor 

Since the ferromagnetic core inductance is a function of 
a current in the circuit and the current is also a function of 
components in the circuit, the aim of this section is to 
analyze the dynamics of a circuit where a resistor is 
connected in series with a ferromagnetic core inductor. 

3.1. Circuit and Mathematical Model 
The circuit diagram is shown on Figure 4, where r  

represents the internal resistance of the inductor and 0R  is 
another resistor added, both to reduce the amplitude of 
current through the inductor and to measure current. 

 
Figure 4. The circuit diagram modeled in this paper. 

Since the inductance of such inductor is not constant, 
the application of the Kirchhoff law leads to the following 
equation: 
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 ( ) ( )
= = .

d Li d BNA
e Ri Ri

dt dt
+ +  (8) 

0=R r R+  represents the total resistance of the circuit 
viewed by the generator. If we replace B  by the 
corresponding expression as in equation (3) and force the 
circuit with an alternating generator that has magnitude 

mE  and radiant frequency ω , we obtain the equation of 
the circuit as: 

 

( )

2 2
0 21 tanh

2 2 2

= sin .

s

m

N A B N A Ni

di Ri E t
dt

µ α α σ

ω

   + − − ×   
    

+

    (9) 

Here again, σ  is defined as in equation (3) 

 = .disign
dt

σ β  
 
 

 (10) 

Let us define 
0

=t τ
ω

 and 0=i I x  where 0ω  is a 

constant and 0 =I
Nα
 . Then, the state equation (9) can 

be rewritten in dimensionless form as: 

 
( ) ( )

( ) ( ) ( )

= sin with
2= 1 .

1 cosh

g x x x E

g x
x

λ τ
ηη

σ

− + Ω

− +
+ −
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 (11) 

The new introduced parameters are defined as follows: 
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2
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3.2. Mathematical Analysis 
To derive an analytical expression of the current in the 

circuit, we put the function ( )g x  in the form 

( ) ( )
( )

1

2
=

g x
g x

g x
 where ( ) ( )2 = 1 coshg x x+ and 

( ) ( ) ( ) ( )1 = 1 1 coshg x xη η+ + − . For simplification, the 
parameter β  is neglected and equation (11) is reduced to: 

 ( ) ( ) ( )1 2= sin .g x x x E g xλ τ− + Ω    (13) 

Replacing expressions for 1g  and 2g  into equation (13) 
leads to the following equation: 

 
( ) ( ) ( )
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= 1 sin sin .

x x E x

x x E

η λ τ
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− + − + Ω


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 (14) 

At this stage, some approximations are needed, we will 
first expand the function cosh  in polynomial form as: 

 ( ) ( )
2

=0
cosh = .

2 !

mM

m

xx
m∑  (15) 

M  is the order of the expansion. Equation (14) becomes: 
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For the second approximation, we find the solution in 
the form ( ) ( )= cos sinx P Qτ τΩ + Ω  where P  and Q  
are unknown parameters to be determined and 

2 2=X P Q+  represents the magnitude of x . We obtain 
after some mathematical transformations the following 
equation: 

 
( ) ( ) ( )
( )

2 2sin sin

2 cos .

ax bx c P Q d
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τ τ

τ
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= − Ω



 (17) 

The parameters a , b , c  and d  are defined as: 
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Replacing expression for x  into equation (17) and 
equating the coefficients of ( )sin τΩ  and ( )cos τΩ  in 
both sides, we obtain the following system: 

 ( )2 2

= 2 ,

= .

a Q bP dPQ

bQ a P c d P Q

Ω + −
 − Ω + −

 (19) 

After some mathematical manipulations, we obtain the 
algebraic equation that verifies the amplitude X  as 
follows: 

 
( )

( ) ( )
4 8 2 2 2 4 4

2 2 2 2 6 2 2 2 2 2

2

= 0

d X cd b a cd X c

d a b X c a b X

+ − Ω − + −

Ω + − Ω +
 (20) 

As the value of M  increases, the power of the above 
equation also increases. We can derive the analytical 
solution for two cases = 0M  and = 1M . 

3.2.1. Case = 0M  
The corresponding equation and the solution are given 

in equations (21) and (22) respectively. 

 ( )2 2 2 2= .X Eλ +Ω  (21) 

 
2 2

= .EX
λ +Ω

 (22) 

In this case, the amplitude of the current and the 
magnitude of the AC generator are linearly coupled. This 
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case corresponds to a linear inductor with inductance 
equals 0L  and is verified for small amplitudes of the 
current in the circuit. Since we know that as current 
increases the inductance decreases and the magnetic 
induction reaches the saturation point. 

3.2.2. Case = 1M  
The corresponding equation here is given by relation 

(23) where the transformation 2=Y X  is used to reduce 
the order of the algebraic equation. 

 3 2
3 2 1 0 = 0.a Y a Y a Y a+ + +  (23) 

The coefficients 3a , 2a , 1a  and 0a  are defined as 
follows: 

 
( ) ( )

( )
22 2 2 2 2

3 2
2 2 2 2
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= 1 , = 32 32 1 ,

= 256 32 , = 256 .

a a E

a E a E
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λ

+ − Ω + − Ω −
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 (24) 
To derive solutions of equation (23), let consider the 

following parameters:  
3 2

2 2 32 3 2 1 3 0
2 3 1

2 9 27
= 3 , = , = .

2
a a a a a a

a a a q qδ δ
− +

− ∆ −  

According to the values of parameters, equation (23) 
can have one or three real solutions and this can be 
decided through the sign of ∆ . 

If > 0∆ , equation (23) has one real solution from 
which we can deduce the amplitude of the normalized 
current as: 

 
1/2

3 3
2
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3
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If < 0∆ , equation (23) has three real solutions and the 
corresponding expressions of X  are given a follow: 
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 (26) 

Even if the analytical method gives more than one 
solution, we think that for the stability of the circuit the 
appropriate solution is the one with smallest amplitude. 
According to this fact, we can say that the required value 
of X  is the minimum value between 1X , 2X  and 3X . 

4. Results and Comparisons 
The aim of this subsection is to present our theoretical 

and experimental results and give comparison between 
them. The experimental values are = 4.0r Ω , 0 = 10R Ω , 

= 24  cm, = 176.71A  mm 2  and = 1000N . mE  and 
= 2 fω π  are used as control parameters with 

0 30mV E V   and 10  Hz 250f   Hz. The 
corresponding theoretical values computed using equation 
(12) worth: 4= 66.2 10λ −⋅ , = 0.9978η , 0 = 423.18L  mH, 

3
0 = 5 10ω ⋅  rad/s and 0 = 27.2I  mA. 

4.1. Effect of the Amplitude mE  
For our first investigation, we will maintain constant 

the frequency at = 50f Hz ( = 0.0628Ω ), then record the 
amplitude of the current as mE  is increasing. Our 
analytical and numerical results are shown on the graphs 
of Figure 5. 

  
Figure 5. Amplitude of the current mI  versus the magnitude of the 
external generator mE : Numerical obtained (curve with dots), first 
order (dashed line) and second order (solid line) analytical plotted 

The curve with dashed line is obtained by using 
equation (22) while the curve with full line is obtained 
from equation (25) or (26). The curve with dots represents 
our numerical results obtained by solving directly the 
differential equation (11) with the fourth order Runge 
Kutta method. 

As the graph reveals, the result obtained analytically 
with the first order approximation ( = 0M ) agrees with 
the numerical ones just for small values of 0=mX X I⋅ . 
As we mentioned above, the first order approximation 
(linear approximation) is valid for small amplitudes of 
current. One can note the good agreement between results 
obtained analytically with the second order approximation 
( = 1M ) and the numerical ones. A small disagreement is 
found when mE  is around 8V and we think that this can 
be overcome by increasing the approximation order. 

Figure 6 depicts the comparison between our numerical 
results (curve with full line) and the experimental results 
(curve with dots). 

Here, it can also be noticed that, the experimental 
results agree with the numerical ones and consequently 
with the analytical results obtained from the second order 
approximation.  



 American Journal of Electrical and Electronic Engineering 34 

 
Figure 6. Amplitude of the current mI  versus the magnitude of the 
external generator mE : Numerical obtained (solid line) and 
experimental recorded (dots and dashed lines) 

Even in the case of high amplitudes of current and high 
amplitudes of the external generator, a good agreement 
remains between the numerical and analytical results as 
shown in the graph of Figure 7. Here, the frequency of the 
external generator equals 200 Hz and we plot the 
amplitude of the current mI  versus the magnitude of the 
external generator mE . Also here, a small disagreement is 
found when mE  is around 35V and we think that this can 
be overcome by increasing the approximation order. 

 

Figure 7. Amplitude of the current mI  versus the magnitude of the 
external generator mE : Numerical obtained (dashed line) and analytical 
ploted (solid line) 

4.2. Effect of the Frequency f  
In this step, the magnitude of the external AC signal is 

kept constant and we analyze the effect of the frequency 
using the second order approximation for our analytical 
treatment. The graph of Figure 8 obtained for = 5mE V 
shows the comparison between the numerical results 
(curve with dashed line), the analytical results (curve with 
full line) and the experimental results (curve with squares). 
It can be observed that the three results are slightly 
identical and the shape of the curves is similar to that of 
the low pas filter obtained in the classical RL circuit. 

Also here and as mentioned in the previous section, we 
found a small disagreement between analytical and 
numerical results when the frequency is located around 
60 Hz and mE  around 8 V. For illustration, using 

= 10mE V we obtained the curves shown in Figure 9. 

   
Figure 8. Amplitude of the current mI  versus the frequency of the 
external generator f : Comparison between the numerical (dashed line), 
the analytical (solid line) and the experimental results (dots) with 

= 5mE V. 

 
Figure 9. Amplitude of the current mI  versus the frequency of the 
external generator f : Comparison between the numerical (dashed line) 
and the analytical (solid line) results with = 10mE V. 

The numerical results (dashed line) and the analytical 
results (full line) are slightly different in a certain 
frequency range. 

Figure 10 highlighs the comparison between our 
numerical results (curve with dashed lines) and the 
analytical results (curve with full line) when the 
magnitude of the external force is increased at = 15mE V. 
Qualitativelly, Figure 9 and Figure 10 have the same 
behavior and hence the same comments. 

 

Figure 10. Amplitude of the current mI  versus the magnitude of the 
external generator mE : Numerical obtained (solid line) and 
experimental recorded (dots and dashed lines). 
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The numerical simulations of equation (11) give results 
that agree well with those obtained experimentally (see 
Figure 11 and Figure 12) for = 5mE V and = 9mE V 
with = 50f Hz 

 

Figure 11. Time waveforms of the current obtained for = 50f Hz and 
= 7mE V. a) Numerically plotted and b) obtained experimentally 

Figure 11a) end Figure 12a) are obtained numerically 
while Figure 11b) end Figure 12b) are their experimental 
corresponding. 

 

Figure 12. Time waveforms of the current obtained for = 50f Hz and 
= 9mE V. a) Numerically plotted and b) obtained experimentally 

On the other hand even if the shape of the current does 
not respect the sinusoidal form, the amplitudes obtained 
from the mathematical analysis can be compared to the 
experimental ones. 

5. Conclusion 
As far the authors are aware, the circuit of Figure 4 has 

not until now been modeled in a way that includes the 
ferromagnetic materials parameters and hysteresis. Our 
model has been incorporated into the differential equation 
that describes the circuit and has been shown to be able of 
displaying all the behavior observed in experiment. 
Another advantage of our model is that the analytical 
treatment can now be done to predict the amplitude of the 
current through a ferromagnetic core inductor. We found 
here a good agreement between the numerical and 
experimental results as well as our analytical results. 

Our next investigation is to test this model on various 
soft and hard magnetic materials used in industrial devices. 
We think also that the analysis of the high frequencies 
effect on the accuracy of this model is another good idea. 
The study of electrical transformers and motors using this 
model is a further interesting subject. 
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