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Abstract  In view of the shortcomings of particle swarm optimization such as premature convergence to local 
optimization, particle swarm optimization algorithm based on quantum gate and particle swarm optimization 
algorithm based on quantum behavior are studied in this paper. The first algorithm uses the random observation 
method of quantum bit coding particles to simulate quantum particle collapse for generating a population and uses 
the quantum rotating gate to generate a new population. The adaptive mutation operator is used for ensuring the 
diversity of the population, effectively reducing the impact of local optimization; therefore, the robustness of the 
algorithm is improved. The second algorithm uses the probability density function of quantum computation to make 
the particles jump out of the local extreme points and fulfils the global search, which is more suitable for continuous 
optimization. The results of computational experiments show that both the two particle swarm optimization 
algorithms based on quantum technology have a good global convergence. 
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1. Introduction 

The classical particle swarm optimization (PSO) 
algorithm is a random search algorithm based on swarm 
intelligence, which has the ability of global approximation, 
but because of its limited search space, it is easy to fall 
into local extremum. In 1996, Narayanan et al. [1] first 
combined quantum theory with evolutionary algorithm, 
proposed the concept of quantum genetic algorithm, and 
created a new direction of the integration of quantum 
computing and evolutionary algorithm. In 2000, Han  
Kuk Hyun [2] of South Korea introduced quantum 
chromosome coding based on quantum theory for the first 
time, using quantum gates to realize population renewal, 
etc. Compared with the traditional evolutionary algorithm, 
quantum evolutionary algorithm has the advantages of 
good population dispersion, strong global search ability, 
fast search speed, and easy to combine with other 
algorithms. Sun Jun et al. give a particle swarm 
optimization algorithm with quantum behavior, namely 
QPSO algorithm, in reference [3]. The algorithm is simple 
and effective, with fast convergence speed, and the global 
search performance is much better than PSO algorithm. In 
quantum behavioral particle swarm optimization, the 
bound state particles described by probability density 
function can appear in any interval of the whole feasible 
search space with a certain probability, so the updated 

position can be much better than the current optimal 
position of the group, so as to meet the global 
convergence of the algorithm. 

In this paper, particle swarm optimization algorithm 
based on quantum gate and particle swarm optimization 
algorithm based on quantum behavior are studied. The 
classical particle swarm optimization (PSO) algorithm is 
combined with quantum theory to encode particles using 
quantum bits, which is represented by the probability 
amplitude of particles. A quantum particle contains the 
information of several basic particle states. Based on the 
quantum superposition and quantum transition theory, a 
new population is generated by using quantum revolving 
gate. In addition, in the standard particle swarm 
optimization algorithm, through the mutual learning 
between groups and individuals, the search speed of 
particles is updated, and the probability density function 
of quantum computation is used to make particles jump 
out of the local extreme point to achieve global search. 
The computational results verify the stability and global 
convergence of the two particle swarm optimization 
algorithms based on quantum computing technology. 

2. Particle Swarm Optimization 
Algorithm 
In the particle swarm optimization (PSO) algorithm 

system, the potential solution of each optimization 
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problem can be imagined as a point in search space, called 
"particle", and all particles have a fitness value determined 
by the objective function. Each particle flies at a certain 
speed in search space, which is dynamically adjusted 
according to its own flight experience and the flight 
experience of other particles. Generally, the particles will 
follow the best particles and search for the best solution 
through generation by generation. In each generation, the 
particle will track two best positions. The first is the best 
position the particle has found so far, which is called 
personal best (pbest) position. The other is the best 
position the whole particle swarm has found so far, which 
is called the global best (gbest) position. When the 
particles find the two extreme values, they update their 
speed and position according to the following formula: 

 1
1 1 2 2( ) ( )t t t t t t

ij ij ij ij j ijV V c r pbest X c r gbest Xω+ = ⋅ + − + − (1) 

 1 1.t t t
ij ij ijX X V+ += +  (2) 

Among them, ijV  is the speed of particle, ijX  is the 
current position of particle, 1, 2, ,i n=  , 1, 2, ,j m=  , n 
is the size of population, m is the dimension of search 
space; 1 2,r r  is the random number between (0,1), 1, 2c c  
are called learning factors, usually set as 2, ω  is the 
inertia factor, mainly to weigh the ability of global search 
and local search. When 0.8ω < , its local search ability is 
weak; when 1.2ω ≥ , its global search ability. The ability 
is strong, generally taking the value between 0.1 and 0.9 [4]. 

From the point of view of dynamics, the particle 
convergence process of particle swarm optimization 
algorithm is based on the pbest point as the attractor. With 
the decrease of speed, the particle converges to the pbest 
point. Therefore, in the whole process, there is actually 
some form of attraction potential energy field at the pbest
point to attract particles, which is the reason why the 
whole particles can keep aggregation [5]. However, in the 
classical PSO algorithm, particles fly along a certain 
trajectory in the classical mechanical state. The space of 
particle search is a limited area, so it cannot be guaranteed 
to find the global optimal solution. 

3. Particle Swarm Optimization 
Algorithm Based on Quantum Gate 

 Quantum particle swarm optimization (QPSO) is a 
combination of quantum theory and particle swarm 
optimization (PSO). It takes advantage of the strength of 
quantum computing over classical computing, increases 
population diversity, and improves computing efficiency 
and performance to optimize its application in multimodal 
optimization. By using quantum probability amplitude 
coding and designing corresponding unitary matrix, the 
quantum update and movement are completed. 

3.1. Population Initialization 
The quantum evolutionary algorithm based on quantum 

gate is represented by Han et al. [2], which encodes every 
individual of the population with quantum bits. The 

quantum algorithm is interpreted as a probability algorithm, 
and the evolution and transfer of quantum states in quantum 
computation are realized by quantum gates. Particles are 
represented by quantum bits, which are called qubits. 
Qubits have two basic states, namely, | 0  state and |1  
state. At any time, the state of qubits can be represented 
by linear combination of basic states, which is called 
superposition state, namely: | = |0 + |1ϕ α β , where α  
and β  are complex numbers, which is called probability 
amplitude. The superposition state can also be written as
| = |0 + |1ϕ α β , arctan β

αθ =  is the phase of the qubit. 
During initialization, the particles are first initialized in 
the [0,1] interval, and then mapped into the domain space. 
The mapping relations is: 

 1( ) [ (1 ) (1 )]
2ij ij ijx b x a xΨ = + + −  (3) 

This mapping is one-to-one mapping from [ 1,1]N−  to 

[ , ]Na b . 
The position of the particle is replaced by the quantum 

superposition state represented by the probability amplitude 
or phase. The space dimension is m, the population size is 
n, and the initialization state of the i-th particle is: 

 1 2

1 2

sin( ) sin( ) sin( )
( ) ( ) ( )

i i im
i

i i im
P

con con con
θ θ θ
θ θ θ

 
=  
 

 (4) 

where =2ij randθ π ×  is the quantum bit phase of the i-th 
particle in the j-th dimension, 1, 2, ,i n=  , 1, 2,j m=  . 
In addition, let the individual history optimum and global 
optimum of the i-th particle be: 
 1 2( ( ), ( ), , ( )ip pi pi pimP con con conθ θ θ=   (5) 

 1 2( ( ), ( ), , ( )g g g gmP con con conθ θ θ=   (6) 

This coding method enables a chromosome to represent 
the probability range of a ground state and expands the 
information capacity of the chromosome in the 
evolutionary algorithm. When sin( )ijθ  or cos( )ijθ  tends 
to 0 or 1, quantum dyeing is proposed to collapse to a 
certain solution at an approximate rate. In addition, using 
trigonometric function to represent the probability amplitude 
of particles can effectively avoid the situation that 
particles cross the boundary and fall into local optimum. 

3.2. Population Regeneration 
In quantum computation, the transition between quantum 

states is realized by quantum energy, and the essence of 
quantum revolving gate is to change the size of the angle. 
The probability amplitude of qubit is updated by using 
quantum rotating gate as follows: 
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where (1 )t t t
ij pij gjβ ϕθ ϕ θ= + −  is the angle of the local 

attractor. The rotation of quantum gate realizes the 
simultaneous movement of two positions by changing the 
quantum phase of particles, which improves the calculation 
efficiency of the algorithm. Therefore, the updated 
position of the i-th particle can be written as follows: 
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where icp is called cosine solution and isp is called sine 
solution. Since the sine and cosine are updated at the same 
time in each iteration, the search ergodicity of the solution 
space can be enhanced, and the optimization speed can be 
improved under the condition that the population size 
remains unchanged. At the same time, it can increase the 
number of global optimal solutions and improve the 
probability of global convergence. The calculation of 

1t
ijθ +∆  is based on the following formula [3]: 

 1 1| | ln( )t t t t
ij ij ij ij ux p x Pα+ = ± −  (10) 

where t
ijp  is the local attractor, t

ijP  is the individual 
historical optimum, α  is the control parameter, and u  is 
the random number evenly distributed between 0 and 1. 
From formula (10), we can get: 

 1 1ln( )| |t
ij pijuθ α θ+∆ = ± ∆  (11) 

where 

2 ,

,

2 ,

t t t t
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t t t t
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， t
pijθ  

is the best corresponding angle of particle history. 
Dynamic adjustment of the magnitude of the quantum 
rotating gate with the iterative process, +1t

ijθ∆  depends on 
t
ijθ∆  size. The direction of the rotation angle is 

determined by u: when 0.5u > , counter clockwise 
rotation ( +1t

ijθ∆ >0); when 0.5u ≤ , clockwise rotation 

( +1 0t
ijθ∆ < ). The control parameter α  changes 

dynamically with the number of iterations. A simple linear 
reduction strategy is adopted: 

 max

max

(1 0.5)( )
=0.5+ .

t t
t

α
− −   (12) 

where maxt is the maximum number of iterations. 

3.3. Adaptive Mutation 
Once the population falls into the trap of local 

optimization, the phase of particle renewal will soon tend 
to 0, and the population will hardly renew. In order to 

solve this problem, an adaptive probability is introduced 
that is defined as [6]: 

 Re*Q µ σ= +  (13) 

where, µ andσ are the variation adjustment parameters, 
Re is the optimal number of iterations without continuous 
or obvious update. If the population is continuously 
updated, the population will not be regulated. If the 
population is not smooth ( Re  will increase cumulatively), 
the probability of population regulation will increase. 

3.4. Algorithm Flow 
Step 1. Initialization population: set parameters. 
Step 2. The first-generation population is initialized in 

the range of [0, 1]. 
Step 3. According to equation (4), the quantum state is 

expressed and the first fitness evaluation is carried out. 
The historical optimal value of particle is particle itself. 
The global optimal value of population is the best fitness 
value. If the jump condition is met, go to step 9; otherwise, 
go to step 4. 

Step 4. Calculate the historical optimal phase of 
particles and global optimal phase of particles. Express the 
quantum state according to formula (4) and evaluate the 
fitness. Add 1 to the number of iterations. If the jump 
condition is met, go to step 9; otherwise, go to step 5. 

Step 5. According to equation (11), the phase change of 
particles is updated and the particles are updated by 
equation (7) using quantum rotation gate. 

Step 6. Judge whether to jump the particle's phase: if 
yes, execute formula (13); otherwise, go to Step7. 

Step 7. According to the preset observation probability 
of particle state, the particle state is selected to collapse, 
and the particle is mapped to the solution space according 
to equation (3). 

Step 8. Evaluate the fitness of the collapsed particles 
and decide whether the exit conditions are met: if yes, go 
to step 9; if no, update the global and historical optimal 
and go to step 4. 

Step 9. Jump out of algorithm and finally output the 
best value. 

4. Particle Swarm Optimization Based on 
Quantum Behavior 

4.1. The Basic Evolution Equation of Particles  
 In the classical mechanical space, the particle's moving 

state has velocity and current state, which determines the 
prescribed trajectory. However, in quantum mechanics, 
the motion of particles is uncertain and there is no concept 
of trajectory. The quantum particle swarm optimization 
algorithm assumes that each particle has quantum 
behavior, and its state is described by the wave function. 
The probability distribution function of particle position is 
obtained by solving the steady Schrodinger equation, and 
then the position of particle motion in one-dimensional 
potential δ— potential trap with the attractor P-point as 
the center is simulated by inverse transformation method 
as follows [3]: 
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 1( ) ln( )
2
LX t p

u
= ±   (14) 

where u is the uniformly distributed random function on 
the interval (0,1), i.e., (0,1)u U∈ ; L is the characteristic 
length of δ— potential trap, generally defined as: 

 ( ) 2 | ( ) ( ) |L t mbest t X tα= −  (15) 

where mbest  is the average optimal position, which is the 
center of the optimal position of all particles. It can be 
calculated by the following formula: 
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According to formula (14) and (15), the renewal 
equation of particle position can be obtained as follows: 

 , , ,
,

1( 1) | ( ) ( ) | ln( )i j i j j i j
i j

X t p mbest t X t
u

α+ = ± ⋅ − ⋅ (17) 

where we use the local optimum of particles instead of 
attractors, that is, , ( )i jp p t= , which is determined by the 
following formula in reference [7] 

 , ,( ) ( ) ( ) [1 ( )] ( )i j j i j j jp t t pbest t t gbest tϕ ϕ= ⋅ + − ⋅   (18) 

where (0,1)Uϕ ∈ , mbest represents the average best 
position of all particles; , ( )i jpbest t  represents the  
j-dimensional coordinate value of the current best position 
of the i-th particle in the t-th iteration; ( )jgbest t  
represents the j-dimensional coordinate of the global best 
position in the t-th iteration; α  is the contraction-expansion 
coefficient. The update mode of the current optimal 
position and the global optimal position of particles is 
exactly the same as that of the corresponding parameters 
in the standard particle swarm optimization algorithm. 

4.2. Dynamic Decreasing Strategy of 
Parameterα  

In order to have a large search space in the initial stage, 
the parameter α  should be relatively large, which can 
prevent the particle swarm from falling into the local 
optimum. With the increase of the number of iterations, the 
value of α  should be gradually reduced so that the particle 
swarm can search for the optimum in a small range, so as 
to approach the local optimum faster. Here, the logistic 
function curve is used to approximate the value of α  [8]: 

 0 1 ( / 0.5)max

1= - *
1+ k t te

α α α
− −

  (19) 

where 0α and 1α  represent the maximum and minimum 
value of control parameter α  respectively; maxt   
represents the maximum number of iterations of the 

algorithm; K is the curve smoothing factor, reflecting the 
smoothness degree of the curve, which determines the 
speed of α  change. Figure 1 shows the change of 
parameter α  in different iteration stages. 

 

Figure 1. Nonlinear decline curve based on logistic function 

4.3. Algorithm Flow 
Step 1. Initialize the position of particles in the particle 

swarm in the problem space. 
Step 2. The average optimal position of particle swarm 

is calculated using equation (15). 
Step 3. Calculate the fitness value of the particle's 

current position. 
Step 4. Calculate the current global optimal position of 

the population. 
Step 5. If the current global optimal position is better 

than that of the previous iteration, the global optimal 
position of the population is updated to its value. 

Step 6. The positions of random points and the new 
positions of particles are calculated according to (17), (18) 
respectively. 

Step 7. Judge whether the algorithm end condition is 
met: if not, return to step 2; otherwise, end the calculation 
and output the result. 

5. Numerical Test and Analysis 

In order to verify the effectiveness and optimization effect 
of the algorithm, this paper uses MATLAB 7.0 platform 
for numerical simulation, and uses Schaffer function of [6] 
proposed by J. D. Schaffer as the test function. Particle 
swarm optimization algorithm based on quantum logic 
gate and particle swarm optimization algorithm based on 
quantum behavior are used for comparative analysis. 

Set population number 50,n =  The maximum number 
of iterations is max 200;t =  c1=2, c2=2, Q=0.95, and 

=0.005σ .The dimension of space is m = 2. Schaffer 
function optimization problem is: 
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Its global minimal is (0, 0), and there are many local 
minima in the range of about 3.13 from the global minima. 
The image of this function is shown in Figure 2.  

 

Figure 2. Schaffer function image 

 

Figure 3. Cross section of Schaffer function image 

 

Figure 4. Comparison of optimization results of Schaffer function 

It can be seen from the cross-section Figure 3 of  
Figure 2 that there are multiple cycles of local extremum 
points around the global minimum point (0, 0). 
Experiments show that with the general particle swarm 
optimization algorithm, due to the continuous change of 
the random initial value, with the increase of the number 
of iterations, the extremum points show a jump change 
near (0, 0), and the accuracy of the local extremum 
converging to the global minimum value 0 is very 
unstable. Therefore, it is difficult to get the optimal result 
of Shaffer function with standard PSO. Figure 4 shows the 

comparison of the results of Schaffer function optimization 
based on quantum gate particle swarm optimization and 
quantum behavior particle swarm optimization.  

6. Conclusion 

It is obvious that the convergence speed and the 
accuracy of the optimization results of the particle swarm 
optimization based on quantum behavior are better than 
that of the particle swarm optimization based on quantum 
gate because of the introduction of the average best 
position in the algorithm. There is a waiting effect 
between particles, which greatly improves the ability of 
particle swarm to work together, thus enhancing the global 
search ability of the algorithm. The particle swarm 
optimization algorithm based on quantum gate uses 
quantum coding technology, through the update of 
quantum gate, generate the next generation population 
with better performance and with a larger probability. 

On the other hand, due to the introduction of adaptive 
mutation operator in the iterative process of population renewal, 
it can effectively reduce the impact of local optimization 
and make up for the defects of premature convergence and 
poor local search ability of standard particle swarm 
optimization. Due to the quantum computing technology, 
the two particle swarm optimization algorithms studied in 
this paper have good global convergence. 
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