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1. Introduction 

The concept of feedback is fundamental in electronics 
and control systems. Feedback is the technique where a 
portion of the output is returned to the input. When the 
feedback signal is out of phase with the input the feedback 
is called degenerative or negative. Negative feedback has 
certain benefits, the most significant being the 
desensitization of the closed-loop gain. Other benefits 
include the extension of bandwidth, the reduction of noise 
and harmonic distortion. Negative feedback also modifies 
the input and output impedances, providing a means for 
tailoring the driving impedance at a specific port to our 
needs. The downside is a potential for instability that has 
to be taken care of at the design stage. 

The analysis of feedback amplifiers, even with only a 
few components, is a complicated procedure because the 
feedback network loads the open-loop amplifier. In 
addition, both the amplifier and the feedback network 
cannot always be assumed to be unidirectional, especially 
at high frequencies. 

Most textbooks present feedback theory in terms of 
two-port analysis [1-3], assuming unidirectional amplifier 
and feedback path. To analyze the circuit, one must first 
determine the type of feedback (voltage or current) and 
the type of signal summing at the input (series or shunt). 
Then the open-loop amplifier is drawn taking into account 
the loading that the feedback network presents to the input 
and output. The closed-loop gain is calculated from the 
open-loop gain A and the feedback factor f. A simplified 
analysis of feedback amplifiers based on the two-port 

methodology may be found in [4]. Similarly, Yeung’s 
approach is essentially based on two-port analysis, [5]. 
Determining the type of feedback and the loading that 
results from the feedback network is not always a 
straightforward procedure. In addition, the calculation of 
the output impedance in current feedback using the two-
port approach can give erroneous results. 

Bode [6] developed feedback theory using the concept 
of the return ratio (RR). The RR for a controlled source 
can be found by setting all independent sources to zero, 
breaking the connection between the controlled source and 
the circuit, then driving the circuit at the break point with 
an independent source of equal strength and calculating 
the resulting output through the feedback loop. The 
technique was further refined by Rosenstark, [7]. Using 
Blackman’s formula, we are able to find the impedance at 
any port, [8]. Few textbooks discuss the return ratio 
approach and not without a reason. Finding a dependent 
source that produces the simplest way to the result 
requires some experience. Otherwise, the procedure may 
be cumbersome and the result not particularly insightful. 

Another technique for feedback circuit analysis is the 
one based on signal flow graphs, [9]. The method can in 
principle be used to handle any feedback architecture, 
however the choice of the parameters that represent each 
flow line is more or less an arbitrary process. Nicolic et al. 
[10], proposed a method that is based on the RR and the 
exact modelling of the amplifier without feedback. The 
resulting expressions for the loop gain and the RR are 
equivalent. Pellegrini [11], developed a new feedback 
theory based on the cut-insertion theorem. Another 
approach is the driving point impedance method 
introduced by Davis [12] and further developed by Ochoa 
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[13]. None of the above-mentioned techniques is 
particularly suited to undergraduate teaching. 

In this paper, a general method for feedback circuit 
analysis is proposed based on the concept of the non-ideal 
op amp. The method treats all amplifiers as voltage 
amplifiers; hence, there is no need to determine the type of 
output sampling and input summation. The open-loop 
voltage gain, as well as, the input and output resistances 
refer to the unloaded amplifier and there is no need to 
calculate the loading that results from the feedback network. 
For quickness of calculations closed-loop expressions can 
be inserted in a spreadsheet. The non-ideal op amp 
methodology produces exact results as it does not make 
the assumption of unidirectional signal flow. The new 
method has been used in the class along with the 
traditional two-port technique and has been well received 
by the students. 

The structure of the paper is as follows: In Section II 
the theoretical background for the analysis of both 
inverting and non-inverting feedback circuits is presented. 
Section III presents a number of examples, classified 
according to feedback type. In Section IV, an expression 
for the output impedance in current feedback is derived to 
complement the theory laid out in Section II. The paper 
closes by highlighting all significant contributions made to 
the field. 

2. The Non-ideal Op Amp Method 

2.1. Feedback Amplifiers 
In a feedback design a large open-loop gain A is 

deliberately produced, then a portion f of the output is 
driven back to the input and subtracted from it to reduce 
gain to the desired value. In Figure 1 the arrows indicate 
that the signal flow is unidirectional, so there can be no 
signal transmission from the input to the output through 
the feedback network. Signals si, sf, sε and sο can be either 
voltages or currents. The output is directly proportional to 
the error signal se produced by subtracting the feedback 
signal sf from the input. 

 ( )o i f i os As A s s As fAsε= = − = −  (1) 

From Eq. (1) the closed-loop gain is readily derived. 
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The gain A is reduced according to 1+fA. If A → ∞ the 
closed-loop gain Af becomes 1/f, i.e. equal to the reverse 
of the feedback factor and independent of the open-loop 
gain. 

 
Figure 1. Block diagram representing a feedback amplifier with 
unidirectional signal flow where A is the open-loop gain and f the 
feedback factor 

In two-port analysis, it is important to determine 
whether the signal sampled from the output is in the form 
of a voltage or a current. The first is said to be shunt 
sampling and the second series sampling. It is also 
necessary to identify if the feedback signal is added to the 
input loop in the form of a voltage (series mixing), or as a 
current inserted to the input node (shunt mixing). By 
taking all possible combinations feedback amplifiers may 
be divided into four categories: 

 
voltage amplifiers with gain AVf = vo/vi 
transconductance amplifiers with gain Gmf = io/vi 
transresistance amplifiers with gain Rmf = vo/ii 
current amplifiers with gain AIf = io/ii 
 
Voltage feedback decreases Ro, while current feedback 

increases Ro. Series summing increases Ri, while shunt 
summing decreases Ri. 

2.2. Non-inverting Amplifier 
In the next paragraphs, we will derive expressions for 

the voltage gain and the driving point resistances at the 
input and output ports as modified by the application of 
feedback. To keep the analysis as simple as possible, we 
will ignore the source internal resistance and the load 
connected to the output. We will also assume that all 
parameters are frequency independent. Figure 2 shows the 
non-inverting op amp configuration. Voltage amplification 
is modelled with a voltage controlled voltage source with 
gain A; Ri is the input resistance and Ro the output 
resistance of the amplifier. 

 
Figure 2. Left: Non-inverting op amp configuration with open-loop 
voltage gain A 

The equations for node voltages vK and vo in matrix 
form are as follows: 
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Solving for vo we find the expression for the closed-
loop voltage gain 
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where the denominator is 

 ( ) ( )( )1 1 21 i i oD A R R R R R R= + + + +  (5) 
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Usually, the term R1Ro in the numerator is much smaller 
than the other term. Dividing the numerator and the 
denominator by (R1+R2)Ri expression (4) is written in a 
more insightful form. 
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where the operator ‖ denotes the parallel combination of 
resistors and f = R1/(R1 + R2). All the terms that appear in 
the denominator cause a reduction in the open-loop gain. 
To get some idea of their relative contribution assume an 
amplifier with A = 300, Ri = 10 kΩ, Ro = 200 Ω, R1 = 1kΩ, 
R2 = 9 kΩ. The following table summarizes the 
contribution of each term in open-loop gain reduction. In a 
well-designed amplifier most of the reduction comes from 
the action of feedback, in other words from the term 
f(A+1+Ro/Ri). Source internal resistance and the presence 
of an external load cause a further reduction in the open-
loop gain. 

Table 1. Percentage Reduction in Open-loop Gain 
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
 𝑓𝑓 �1 + 𝐴𝐴 +

𝑅𝑅𝑜𝑜

𝑅𝑅𝑖𝑖
� 

𝑅𝑅1‖𝑅𝑅2

𝑅𝑅𝑖𝑖
 

𝑅𝑅𝑜𝑜

𝑅𝑅1 + 𝑅𝑅2
 

2.89% 96.75% 0.29% 0,07% 

 
To find an expression for the closed-loop input 

resistance we express the ratio vi/ii as a function of the 
node voltages 
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Solving (3) for vK and substituting to (7) we get 
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where D is taken from (5). 
To derive an expression for the closed-loop output 

resistance we refer to the equivalent circuit of Figure 3, 
where the input has been connected to the ground and we 
have introduced the independent voltage source vo that 
drives the amplifier output, producing a current io. Current 
io consists of two components 
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Using the voltage divider rule the error signal is written 
as 
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Combining (9) and (10) we obtain the expression for 
the closed-loop output resistance 
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where D is given by (5). 

 
Figure 3. Equivalent circuit for the calculation of the closed-loop output 
resistance 

Among others, two basic feedback circuits can be 
implemented with the non-inverting topology: the voltage 
amplifier and the transconductance amplifier. Figure 4 
gives the expression for the ideal gain A∞ (obtained when 
A → ∞), as well as, the relation of the closed-loop voltage 
gain AVf to the desired closed-loop parameter. 

 
Figure 4. Ideal gain and closed-loop parameter as a function of the 
closed-loop voltage gain 

2.3. Inverting Amplifier 
The inverting op amp configuration is depicted in 

Figure 5, along with its equivalent circuit. The parameters 
have the same meaning as in the previous paragraph. The 
node equations are written as 
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Solving (12) for vo we get the expression for the closed-
loop gain 
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where D is given by (5). In most practical amplifiers, the 
term Ro in the numerator is much smaller than AR2 and 
can be omitted. Dividing the numerator and denominator 
by R2Ri the closed-loop voltage gain can be written in the 
form 
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where f = R1/R2. In a properly designed amplifier most of 
the gain reduction comes from the action of feedback, i.e. 
from the term f(A+1+Ro/Ri). 

 
Figure 5. Left: Inverting op amp configuration. Right: controlled source 
model 

The input resistance of the circuit is defined as 
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Solve (12) for vK and substitute the result in (15) to get 
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There is no need to calculate the output resistance,  
since the equivalent circuit is the same to that for the  
non-inverting amplifier (Figure 3). Expression (11) also 
holds for the inverting amplifier. 

 
Figure 6. Ideal gain and closed-loop parameter as a function of the 
closed-loop voltage gain 

Transresistance and current amplifiers are usually 
implemented using the inverting configuration. Figure 6 
gives the expression for the ideal gain A∞, as well as, the 
relation of the desired closed-loop parameter to the 
voltage gain AVf obtained with the non-ideal op amp 
method. 

This concludes our analysis for the two basic amplifier 
configurations. Equations (4), (8), (11) form the basis for 
the analysis of amplifier circuits that do not invert their 
input, whereas equations (13), (16), (11) are used for 
inverting amplifiers. In the following paragraphs, a 
number of feedback circuits will be analyzed with the new 

methodology, classified according to the type of feedback 
and input summation. 

3. Examples of Feedback Amplifiers 
Analyzed With the New Methodology 

3.1. Series-shunt Feedback 
In series-shunt feedback, the output voltage is sampled 

with a voltage divider and the feedback signal is 
subtracted in the input loop. The amplifier of Figure 7 is a 
typical case. Because of the asymmetry that exists in the 
differential stage inputs, the amplifier does not comply 
with the simple model of Figure 1 and the application of 
the two-port method is inappropriate. Neglecting feedback 
resistors R1, R2 the unloaded open-loop gain, input and 
output resistances are as follows: 

 1 5 5 1, 2 ,m m o i o oA g r g r R r R rπ π= = =  (17) 

where gm is the transistor transconductance, rπ its input 
resistance and ro the total load at the collector of Q5 
excluding RL. Using equations (4), (8), (11) we find the 
expressions for the closed-loop parameters indicated by 
the subscript “f”. 
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with A taken from (17). These are exact expressions, not 
approximations. No assumption whatsoever has been 
made about the internal structure of the amplifier and 
signal flow. Note the common term that appears in all 
expressions resulting from the common term D in 
equations (4), (8), (11). This term is not identical to the 
1+fA quantity of the two-port theory, because here A is the 
unloaded open-loop gain. 

 
Figure 7. A two-stage voltage amplifier 

Assuming hfe = 100, gm1 = 4 mS, rπ1 = 25 kΩ, gm5 = 40 mS, 
rπ5 = 2.5 kΩ, ro = 50 kΩ we find Avf = 9.97, Rif = 16.7 MΩ, 
Rof = 24.4 Ω. While the input and output resistances are a 
property of the amplifier itself, the gain from the input to 
output should account for the source internal resistance 
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and also the external load connected to the output. 
Assuming Rs = 2 kΩ, RL = 20 kΩ the total gain is 
computed as 

 · · 9.96ifo L
vf

i s if of L

Rv R A
v R R R R

= =
+ +

 (21) 

All results are verified by SPICE simulation. 
Another example of a voltage amplifier is taken from 

reference [14], Figure 6. Quoting from this source: “This 
differs from the basic voltage-feedback structure in that 
the current flowing into the left-hand side of the feedback 
network is not the input current to the amplifier without 
feedback (which happens to be zero in the case of a FET); 
rather, it is the source (or drain) current of the first stage.” 

 
Figure 8. A two-stage voltage amplifier with FETs 

With reference to the non-ideal op amp method, when 
feedback is applied to a point of low resistance, such as 
the emitter of a bipolar transistor or the source of a FET,  
a transformation of resistors is necessary, see [16]. For 
bipolars R1, R2, Ro should be multiplied by hfe+1. 
Alternatively, Ri can be divided with hfe+1 leaving R1, R2, 
Ro unchanged. In FETs the transformation factor is μ+1 
where μ = gmrd, where rd is a high value resistor, usually 
the resistance “seen” when looking at the drain. For 
practical calculations, we will assume a value of 109 for 
both the drain and gate resistance. Dividing the input 
resistance by μ+1 gives 
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After doing the calculations the value obtained for the 
closed-loop input resistance Rif should be multiplied by 
μ+1 (or hfe +1). 

Neglecting R1, R2 the open-loop voltage gain and output 
resistance of the amplifier of Figure 8 are 

 1 1 2 2 2,m d m d o dA g R g R R R= =  (23) 

From (4), (8) we get the expressions for the closed-loop 
parameters: 
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Assuming gm1 = gm2 = 20 mS, Rd1 = Rd2 = 5 kΩ,  
R1 = 1 kΩ, R2 = 9 kΩ we get: Avf = 9.72, Rif = 686 GΩ,  

Rof = 92.3 Ω. SPICE simulation produces exactly the same 
results. 

3.2. Shunt-shunt Feedback 
In shunt-shunt feedback the output voltage is sampled 

and a current analogous to the output is injected to the 
input node. The closed-loop parameter Rmf = vo/ii is called 
transresistance or mutual resistance. To apply the non-
ideal op amp method to the inverting amplifier of Figure 9 
the current source is along with its internal resistance Rs 
should be converted to their Thevenin equivalent, see right 
side schematic where Rs has been renamed as R1. Then the 
open-loop parameters can be calculated by setting R1 to 
zero and R2 to infinity. 
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Figure 9. Single transistor transresistance amplifier 

Using equations (13), (16), (11) the expressions for the 
closed-loop parameters are as follows 

 ( )
( )( ) ( )

'
2

' '
1 2 1

1

1
c m

vf
c m c

r R g R
A

R r R R r R g R
π

π π

−
= −

+ + + +
 (27) 

 
( )'

2
' '

2

c
if

c m c

r R R
R

R r R g r R

π

π π

+
=

+ + +
 (28) 

 
( )

( )( ) ( )
'

1 2 1 2
' '

1 2 1 1
c

of
c m c

R R R r R R
R

R r R R r R g R
π

π π

+ +  =
+ + + +

 (29) 

where 𝑅𝑅𝑐𝑐
′ = 𝑅𝑅𝑐𝑐 ‖𝑟𝑟𝑜𝑜 . Equation (28) gives the expression for 

the closed-loop resistance at the base of the transistor after 
subtracting R1. Assuming gm = 40 mS, rπ = 2.5 kΩ, ro = 50 
kΩ, R1 = 10 kΩ, R2 = 68 kΩ we find Avf = -5.64,  
Rif = 342.5 Ω, Rof = 726 Ω. The resistance that the current 
source sees is 342.5‖10,000 = 331 Ω. To calculate the 
closed-loop transresistance we write 

 1
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These results are verified by SPICE simulation. 

3.3. Shunt-series Feedback 
Shunt-series feedback is especially suited to current 

amplifiers. In the amplifier depicted on the left side of 
Figure 8 the output current is sampled with resistor R2 and 
a portion of it is returned to the input node. To solve this 
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circuit with the non-ideal op amp method we need to 
convert the current source to its Thevenin equivalent 
circuit. The output is the point where feedback is applied, 
therefore the open-loop voltage gain vo/vi ignoring R1, R2 
(R1 = 0, R2 → ∞) is 
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V
m L L

g r R R RA
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+ ++
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Figure 10. Left: current amplifier. Right: AC equivalent circuit with the 
current source transformed to a voltage source 

The open-loop output resistance is R‖(1/gm+RL). 
Assuming gm = 0.02 S, ro = 50 kΩ, RL = 500, R = 4 kΩ,  
R1 = 10 kΩ, R2 = 20 kΩ we find A = -440, Ro = 483.5 Ω. 
For numeric computation purposes we will use Ri = 109 Ω. 
Using eqs. (13), (16) with R1 = 10 kΩ, R2 = 20 kΩ we get 
AVf = -1.986, Rif = 46.5. The resistance that the current 
source sees is 46.5‖10,000 = 46.3 Ω. By making the 
approximation that the AC voltage at the gate of M1 is 
zero the closed-loop current gain is computed as 
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SPICE simulation agrees with the above results and 
predicts an output resistance of 591.8 kΩ for the load. 
Obviously, the output resistance we have found is 
erroneous. The actual resistance that the load “feels” will 
be calculated in the next Section. 

Equation (32) is a good approximation for the majority 
of practical circuits. An exact value for the current gain 
can be found if vg is calculated from the formula 
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The current gain is subsequently computed as 
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3.4. Series-series Feedback 
In this type of feedback, a portion of the output current 

is fed back to the input and mixed with the input signal in 
the input loop. In the transconductance amplifier of  
Figure 11 the amplifier is assumed to have voltage gain  
G = 1000, input resistance ri = 10 kΩ and output 
resistance ro = 500 Ω. As mentioned in a previous 
paragraph the output is the point where feedback is taken 
from. The open-loop voltage gain neglecting R1, R2 is 
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The open-loop input resistance is Ri = ri = 10 kΩ and 
the output resistance Ro = R ‖ (RL+ro) = 93.75 Ω. From 
equations (4), (8), (11) we obtain the closed-loop 
parameters: Avf = 12.56, Rif = 47 kΩ, Rof = 19 Ω. Because 
of the series feedback applied to the output, the Rof  
value is erroneous. The closed-loop transconductance is 
calculated as 
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SPICE simulation produces exactly the same results. 

 
Figure 11. Transconductance amplifier drawn in op amp form 

4. Output Impedance Calculation in 
Current Feedback 

The output resistance as given by relation (11) is the 
resistance at the output node when the amplifier is 
operating in voltage mode. In series output feedback, 
sometimes called current feedback, we are interested to 
the resistance that the load “feels” due to the action of 
feedback. The higher the resistance the smaller is the 
current variation. The load maybe connected to the emitter 
or to the collector of the output transistor. We will start 
with the former case. A general equivalent circuit is 
shown in Figure 12. The output current is given by the 
expression 
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where the error signal is computed as 
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At node A the following equation holds 

 ( )1 2

1 2 1 2
0, iA A

o A o
i i

R R R Rv v i v i
R R R R R R R R

+
+ + = = −

+ + +

‖

‖ ‖
(39) 

Substituting (38), (39) to (37) and then solving for vo/vi 
we obtain the expression for the output resistance in series 
feedback. 
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Figure 12. Equivalent circuit for the calculation of the output impedance 
when “looking” to the emitter 

The resistance when looking down to the collector of 
the transistor (Figure 13) can be computed from the 
equation 
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,

,
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oC series o
B oE series

g r R
R r

r R R
π

π

 
= +  + + 

 (41) 

where RB is the effective resistance at the base of the 
transistor. For FETs rπ is infinite and (41) simplifies to 

 ( ), ,1oD series m oS series oR g R r= +  (42) 

 
Figure 13. The resistance when looking down to the collector of the 
transistor. Resistance RoE,series results from the application of current 
feedback 

Having derived equation (40) we are now able to 
calculate the output resistance “seen” by the load for the 
circuits of Figure 10 and Figure 11. For the circuit of 
Figure 10 (right side) the open-loop gain and output 
resistance are computed assuming infinite resistance 
connected at the source of transistor M3. As usual we 
neglect resistors R1, R2. It is found that |A| = gmro/2 = 500, 
Ri → ∞, Ro = 1/gm = 50 Ω. Using (40) with R = 4 kΩ,  
R1 = 10 kΩ, R2 = 20 kΩ we find RoS,series = 591.8 kΩ which 
is also the value predicted by the simulation. 

For the circuit of Figure 11, setting R1 = 0 and 
disconnecting the amplifier output from the load, we get: 
A = 1000, Ri = 10 kΩ, Ro = 500 Ω. Then from eq. (40) 
with R = 100 Ω, R1 = 100, R2 = 1.5 kΩ we find Rof,series = 
6.42 kΩ, a value that is verified by SPICE. 

One last example to be examined is the transconductance 
amplifier of Figure 12 taken from [15]. In this work, it is 
mentioned that the two-port method fails to calculate the 
correct resistance at the collector of the transistor. For the 
amplifier depicted with the triangle we will assume a gain 
G = 1000, ri → ∞, ro = 0. The bipolar transistor parameters 
are: hfe = 100, gm = 40 mS, rπ = 2.5 kΩ. We will first 
calculate the resistance seen at the emitter. For this reason, 
the inverting input is connected to the ground and the 
emitter is connected to a load with high AC impedance, 

for example an inductor with infinite self-inductance. The 
open-loop parameters are: A = G, Ri = ri, Ro = re. Then 
using (40) with R2 = 0 we get 

 ( )( )11emitter eR r G R R= + + ‖  (43) 

In our case R1 → ∞ and (43) simplifies to 

 ( )1emitter eR r G R= + +  (44) 

 
Figure 14. Calculation of the resistance presented to the load in a 
transconductance amplifier 

Substituting the values given we get Remitter = 100.125 kΩ. 
To find the expression for the resistance presented at the 
collector we use (41) with RB = 0. 
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Substitution of values gives Rcollector = 5.05 MΩ which 
is exactly the value predicted by SPICE simulation. If the 
gain G is large the resistance at the collector becomes 
Rcollector = (hfe+1)ro. 

5. Discussion 

The non-ideal op amp method has been proposed as a 
simpler and more accurate alternative to the established 
two-port methodology. It overcomes the two main difficulties 
of the two-port method, namely the identification of 
feedback type and the determination of feedback loading 
to input and output. The first difficulty does not exist 
because every amplifier is treated as a voltage amplifier 
and the second is overcome by calculating the unloaded 
open-loop quantities. The results obtained are exact; no 
assumption is made for the amplifier structure or the 
signal flow. If numerical results are wanted, equations can 
be inserted in a spreadsheet. This saves time and 
guarantees accuracy. If we need to have the full closed-
loop expressions, we can Maple, Matlab symbolic toolbox 
or SymPy (a Python library for symbolic mathematics). 
The effort required is minimal. This is not possible to do 
with the return ratio analysis or other methods.  

The non-ideal op amp method provides intuition on the 
loading caused to the open-loop gain by the various 
parameters, eqs (6) and (14). This way the student or even 
the experienced designer can find which parameter needs 
optimization. 
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The proposed method has been presented using a 
constant open-loop gain and resistances. However, there is 
no reason why it should not work with frequency 
dependent components or parameters. To this end, 
resistors can be substituted with impedances and the open-
loop gain with a frequency dependent expression A(f). 

The steps taken to apply the proposed methodology are 
as follows: 

i) find out if the amplifier inverts its input signal or not 
ii) if a current source is connected to the input replace it 

with its Thevenin equivalent circuit 
iii) identify feedback resistors R1, R2 and calculate the 

unloaded voltage gain, input resistance and output 
resistance 

iv) when the feedback is returned to a point of low 
resistance, such as the emitter of a bipolar transistor or the 
source of a FET, a transformation of resistances is 
necessary. 

iv) calculate the closed-loop parameters. For the non-
inverting case use Eqs. (4), (8), (11). For the inverting 
case use Eqs. (13), (16), (11). 

v) if necessary, express the desired closed-loop quantity 
as a function of AVf and the other circuit parameters. 

The proposed method has been used in the class for a 
number of years as a tool for teaching feedback in 
undergraduate courses about analog electronics. The 
students found its application simpler than the other 
methods. Typically, the non-ideal op amp is used as a 
means to quickly get the correct result and then compare 
with other established methods that may offer more 
insight into the action of feedback. 

6. Conclusions 

The non-ideal op amp method proposed here builds 
upon the well-known theory of op amp circuits.  
It is a general method as it makes no assumptions  
about the structure of the amplifier or the direction of 
signal transmission. The proposed methodology treats 
every amplifier as a voltage amplifier. It is simple to  
apply, as only the unloaded quantities need to be 
calculated. This way the main difficulties in the 
application of the two-port methodology (identification of 
feedback type and loading from the feedback network) are 
inherently solved. 

In addition to the non-ideal op amp approach, a 
methodology that allows the correct calculation for the 
output impedance in current feedback has been presented. 
The application of the two-port analysis is problematic in 
this situation and cannot distinguish between the cases 
where the load is connected to the emitter or to the 
collector of the transistor. 

All expressions derived in this paper use resistors, 
however the proposed methodology also works for circuits 
with frequency dependent components. Work to calculate 
transfer functions using the non-ideal op amp method is 
underway. 
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