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Abstract  The effect of elastic strain of moderate magnitude using high doped silicon substrate can change the 
conductivity of the substrate. The commonly used metal (strain) gage has a magnitude factor of between 2 ÷ 4 while 
high doped silicon (strain) gage factor magnitude is between 150 ÷ 200, thus improving the substrate sensitivity 
considerably. Using those physical attributes allow us to create a MOEMS sensor resolving accuracy issues and 
saving space in any future MOEMS device design. Those devices will be able to measure any mechanical movement 
connected to the high doped silicon substrate by converting the physical strain created from the movement stress to 
current/voltage change in the substrate device. The simplicity of the device is that the device could measure 
movement without any need to implement an outer sensor to it. By measuring the device's strain change it would 
"feel" the movement and convert it to an analog value, thus creating a strain gage built in the MOEMS device 
surface. 
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1. Introduction 
Many of the MOEMS (Micro Optic Electric 

Mechanical System) development is micro mirrors devices 
that display an image or a video signal on a screen. Those 
devices usually use small sensors such as PSD (Position 
Sensitive Diode). Many of those devices encounter 
difficulties due to sometime pour image focus that derives 
from the difficulty to close the closed control loop 
between the mirror movements to the actual mirror 
position. Also those sensors are relatively quite big in the 
mirror device. 

 

We wanted to create a "built in" sensor implemented in 
the mirror base rod substrate, thus simplifying the device 
and improving the sensor's reading and the image quality.  

In order to measure angular movement of a micro 
mirror placed on a micro rod a mechanical stress 
conversion is needed. The stress resulting angular 
movement is torque stress, and in order to easily measure 
small strain change in the substrate we needed to convert 
it to a linear torsion or compression stress. 

2. Mechanical Stress Transformation of 
Torsion to Tensile and Compression 

Converting the torsion stresses to tensile and 
compression stresses was done by using new mechanical 
connection between the main beam of the mirror and its 
end connection. The new structures at the end connection 
were shaped as “H” for the micro mirror main beam. This 
solution is an originally development we invented and 
proved as very useful.  

Getting a linear stresses distribution on a large surface 
made it easy to measure without limiting the micro mirror 
movement requirements. The constraint design of main 
mirror beam was very basic. The cube shaped connection 
gave no room for implanting any sensors or to create big 
surface to measure stresses.  
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The first mirror beam design. 

 

Finite elements analysis showing that the stress 
concentrates on a small and difficult area to monitor. 

The new "H" design constraint. 

 

Finite elements analysis shows that changing the 
constraint design of the mirror main beam end connection 

to "H", converted the torsion stress to a uniformed 
compression and tensile stress area which is easier to 
monitor. 

Mechanical analysis of the main beam mirror. 
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The strain-displacement relation is 
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xx dx

ε = . 

In the case when the stain is x-dependent, the 
elongation of the gauge is: 
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Maximum elongation of the beam is 0.013 mm. 
Calculation shows the same maximum elongation for 

the other half of the beam. 
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Both half beams are symmetric up to a sign difference.  
The elongation is big enough to be effective and 

measurable by our sensor application. 
The maximum strain of half a beam is:  
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3. Electronic Design 
"H" surfaces will get opposite tensile and compression 

stresses. Those surfaces are the variable resistors of the 
Wheatstone bridge.  

The surfaces are already doped thus have better 
sensitivity. Ref. resistors are doped surfaces with no 
stresses applied on them. 
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4. High Doped Silicon as a Strain Gage 
The Electrical Principle of operation in order to create 

the built in sensor was first of all adding beams for the 
“H” constraint, thus adding big surfaces that are easier to 
implant MEMS sensors on. Secondly using high doped 
silicon to increase the conductivity of the substrate, thus 
enhancing the sensitivity of the built in sensor in the 

substrate. The gage factor of metal is between 2 ÷ 4 while 
the high doped silicon gage factor is between 150 ÷ 200. 
Thirdly using Wheatstone bridge to precisely measure the 
small changes in the resistance of the material due to 
applied stresses derived from angular movement. Another 
use of the Wheatstone bridge is to compensate 
temperature interferences and noises.  

 ,
L L L

R R RS SA h b b h
ρ ρ

ρ= = ⋅ = ⋅ ≡  

For high doped silicon 2 110 10 cmρ − −= ÷ Ω ⋅  
New added beam dimensions: L=780µm=0.078 cm, but 

our elongation measurements were done for half beam so 
we shall use L/2= 0.039 cm in our calculations. 
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For gage factor 150 we get resistance delta of: 
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5. Fabricating a Prototype Model  

 

In this project the device was designed, masks were 
fabricated and manufacturing process flow was created for 
this specific model. Masks were fabricated in micro 
fabrication labs of Tel Aviv University, lithography, Dry 
Etch, Wet Etch and the production process was done in 
the labs. The process was unique and included 
complicated design and fabrication with Critical 
Dimensions as small as 10 µm with depth of 70 µm.  

The highly doped silicon substrate amplified the 
sensitivity of the measurement areas, thus enabling easier 
way to measure small angular movements of the micro 
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mirror. The new device is simpler and takes smaller space 
then the old one (with the PSD). 

6. Conclusion  
The new design of built in sensor on silicon substrate as 

a strain gauge is new and innovative. It can change the 
method of MEMS measurements for micro mirrors and 
other applications. Those measurements are essential for 
closed loop control systems used in micro moving system 
applications. We hope this project will make it easier to 
develop devices for scanning images on small screens 
such as glasses, small projectors etc or any other MEMS 
designs it might have an effect on. 
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