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Abstract  In this paper complete synchronization of diffusively coupled oscillators is considered. We present the 
results of both, theoretical and experimental investigations of synchronization between two, three and four almost 
identical oscillators. The method of linear difference signal has been applied. The corresponding differential 
equations have been integrated analytically and the synchronization threshold has been found. Hardware 
experiments have been performed and the measured synchronization error of less than 1% has been determined. 
Good agreement is found between theoretical and experimental results. 

Keywords: Chaos, Synchronization, Oscillator 

Cite This Article: B. Nana, and P. Woafo, “Synchronization of Diffusively Coupled Oscillators: Theory and 
Experiment.” American Journal of Electrical and Electronic Engineering, vol. 3, no. 2 (2015): 37-43. doi: 
10.12691/ajeee-3-2-3. 

1. Introduction 
In the last few years, several researchers have focused 

their attention on the problems related to the 
synchronization of chaotic systems [1-5]. Today the 
potential of chaos theory is recognized in the world-wide 
with research groups actively working on this topic [6-10]. 
One of the great achievements of the chaos theory is the 
application in secure communications. The chaos 
communication fundament is the synchronization of two 
chaotic systems under suitable conditions if one of the 
systems is driven by the other. Since Pecora and Carrol 
[11] have demonstrated that chaotic systems can be 
synchronized, the research in synchronization of couple 
chaotic circuits is carried out intensively and some 
interesting applications such as communications with 
chaos have come out of that research. 

There are several methods for synchronizing chaotic 
oscillators described in literature [12-17]. The simplest 
one employs the feedback in the form of linear difference 
between the output of the transmitter ( )1u t and the output 

of the receiver ( )2u t . The difference signal ( )2 1K u u−  
when applied with a certain weight minK K>  to an 
appropriate input of the receiver synchronizes the latter to 
the transmitter [16]. Although there are many papers 
describing global synchronization of a network of coupled 
oscillators, less attention has been devoted to experimental 
results for bidirectional coupled systems. 

In this paper, attention will be drawn to complete 
synchronization of two, three and four coupled chaotic 

oscillators. The remainder of this paper is organized as 
follows. In section 2, we present the used oscillator and 
study its dynamic behavior as a function of control 
parameter. In section 3, synchronization of two, three and 
four diffusively coupled oscillators are analyzed 
theoretically. Section 4 deals with the experimental setup 
and where experimental results are compared to the 
numerical ones. Finally conclusions are drawn in section 5. 

2. Circuit Model and Description 

2.1. Circuit Model 
The circuit diagram of the oscillator is shown in Figure 

1. 

 

Figure 1. Electronic scheme of the oscillator 
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The circuit is a third order nonlinear oscillator 
containing five operational amplifiers. We assume that all 
the operational amplifiers operate in their linear domain. 
In our model, the diode acts like non linear component 
and we model its voltage-current characteristic with an 
exponential function, namely 

 0
0

exp 1vi I
V

  
= −  

   
 (1) 

where i  is the current through the diode, v  is the 
voltage across the diode, 0I  is the inverse saturation 
current and 0 26 mVV   at the room temperature. The 
dynamics of the oscillator is given by the following set of 
differential equations: 
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Introducing the following dimensionless variables and 
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we come to the set of differential equations convenient 
for numerical integrations 

 ,x y z= −  (6) 

 ( )sinh ,y ax by cz x= − − −  (7) 

 .z x dy= +  (8) 

2.2. Dynamic behavior 
Assuming that in the oscillatory state, variables x , y  

and z  can be replaced by their corresponding virtual 
orbits 0x , 0y  and 0z  respectively, we find 0x , 0y  and 

0z  in the following form: 
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Using the above expressions and neglecting the higher 
harmonics, we can show that  
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By substituting system (8) and equation (9) in the set of 
equations (5), (6) and (7) and equating the coefficients of 

j te ω  and j te ω−  separately to zero, we obtain the radian 
frequency of oscillatory orbit by. While the amplitude of 
oscillation is obtained by solving the following 
polynomial equation:  
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In view to derive the analytical expression of amplitude 
A , we fixe 3N =  and we obtain the following result: 
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This system presents stationary, periodic and chaotic 
attractors depending on the value of the parameters 
( ), , ,a b c d . The bifurcation diagram as well as the 
Lyapunov exponent drawn in Figure 2 show that for 
certain sets of parameters, the system exhibits chaotic 
oscillations. We used c  as control parameter and other 
used parameters are the following: 3.5,a =  

0.5,b = 1.2.d =  

 

Figure 2. a) One parameter bifurcation diagram in the ( ),c x plane and 

b) maximal Lyapunov spectrum Lya  

The bifurcation diagram consists of quasiperiodicity, 
chaos, windows, period adding sequences and the familiar 
period doubling bifurcation sequence, intermittency and 
so on. As shown, there is a good agreement between the 
bifurcation diagram and its corresponding maximal 
Lyaponov exponent. 
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3. Synchronization of Coupled Oscillators 
Recently, Woafo and Kraenkel [18] considered the 

problem of stability and duration of the synchronization 
process between classical Van der Pol oscillators and 
showed that the critical slowing-don behavior of the 
synchronization time and the boundaries of the 
synchronization domain can be estimated by analytical 
investigations. The next subsections extend the 
calculations of Ref. [18] to two, three and four diffusely 
coupled oscillators. Only in our analytical treatment, we 
assume that oscillators have identical coefficients. 

3.1. Synchronization in a Case of two 
Oscillators 

Here, we aim to determine the threshold value for 
synchronization (the minimal value K  such that practical 
synchronization occurs) of two oscillators. The two 
oscillators are diffusely coupled with a buffer and a 
variable resistor cR , which give the coupling constant 

( ) 1
1 0cK R C ω −= . The dynamics of two diffusely coupled 

oscillators can be described by the following set of 
equations: 
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where index i  and j  represent the oscillator number 
( , {1,2}i j∈ ). Assuming the three following vectors 
defined as 1 1 1 1( , , )u x y z , 2 2 2 2( , , )u x y z  and 

1 2 2 1 2( , , ) = u uε ε ε ε − , the stability of synchronization 
manifold is decided by the asymptotic behavior of 

1 1 2 2 1 2 3 1 2= , = and =x x y y z zε ε ε− − − . At a linear 
approximation, 1 2 3, andε ε ε  obey to 
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By replacing the chaotic variable 1x  by its virtual orbit 

0x , the dynamics of the synchronization errors is then 
described by the linear system  
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Using the Lyapunov criteria, the synchronization is 
stable if the real part of all eigenvalues is negative. 
Assuming that λ  is the eigenvalue of system (15), then it 
obeys the following algebraic third order equation:  

 ( ) ( )
( )
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b K Kb cd
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+ + + + − + +

+ + +
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The determination of signs of the real parts of the root 
λ  may be carried out by making use of the Routh-
Hurwitz criterion. In applying this criterion, we find that 
the real parts of the roots are negative if 
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Then the synchronization is said to be stable if 
2 min>K K , where the new parameter 2 minK  is defined 

as follow:  

 2 min = .
2

c b dK
cd
α+ +

−  (18) 

As shown in Figure 3, the result obtained from equation 
(18) is verified by a direct numerical simulation of system 
(13). 

 

Figure 3. Synchronization boundaries in the case of two coupled 
oscillators 

Numerically, we use the fourth order Runge Kutta 
algorithm and we find the first value of K  for which 
quantity 1 2| |< 0.05x x−  for 400t ≥ . In Figure 3, the 
numerical result (points and dashed-line) fluctuates around 
the analytic curve (solid line). 

3.2. Synchronization in a Case of three 
Oscillators 

In this case, the dynamics of three diffusely coupled 
oscillators can be described by the following set of 
equations:  
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Index j  (with 1 3j≤ ≤ ) represents the oscillator 
number and the two periodic boundary conditions 0 3=x x  
and 4 1=x x  are used. Assuming the five following 
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vectors defined as 1 1 1 1( , , )u x y z , 2 2 2 2( , , )u x y z , 

3 3 3 3( , , )u x y z , 1 2 2 1 2 3( , , ) = 2u u uη η η η − + , and 

1 2 2 1 3( , , ) = u uε ε ε ε − , the stability of synchronization 
manifold is decided by the asymptotic behavior of η  and 
ε . At a linear approximation, the components of η  and 
ε  obey to  
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The form of systems (20) and (21) brings the following 
comment: the three oscillators fall together in the 
synchronization. Proceeding in the same manner as the 
above subsection, we obtain the synchronization boundary 
as 3min>K K  where  

 3min = .
3

c b dK
cd
α+ +

−  (22) 

Figure 4 shows comparison between analytical result 
(full line) and numerical result (points and dashed-line). 
Numerically, we find the first value of K  for which 
quantity ( )1 2 1 30.5 | | | | < 0.05x x x x− + −  for 400t ≥ . 

 

Figure 4. Synchronization boundaries in the case of three coupled 
oscillators 

3.3. Synchronization in a Case of four 
Oscillators 

Four systems are diffusely coupled in a ring structure 
with a coupling constant K . The dynamics of four 
diffusely coupled oscillators can be described by the 
following set of equations:  

 

( )
( )

1 1= 2 ,

= ,

= .

j j j j j j

j j j j j

j j j

x y z K x x x

y ax by z sh x

z x dy

− + − + − +

 − − −


+







 (23) 

Index j  (with 1 4j≤ ≤ ) represents the oscillator 
number and the two periodic boundary conditions 0 4=x x  

and 5 1=x x  are used. Assuming the three following 
vectors defined as  

1 3 2 4 1 3 2 4= ( ) ( ), = and = .u u u u u u u uη ε ξ+ − + − − (24) 

The stability of synchronization manifold is decided by 
the asymptotic behavior of η , ε  and ξ . At a linear 
approximation, the components of η , ε  and ξ  obey to 
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Choosing 4 =
4min

c b dK
cd
α+ +

− , if 

4 4 2< < 2 =min min minK K K K  the ring falls in the cluster 
synchronization ( 1 3u u , 2 4u u  while 1 2u u≠  ). If 

4> 2 minK K  the complete synchronization 
( 1 2 3 4u u u u   ) occurs in the ring. To verify our 
assumption, we plot as shown in Figure 5 our analytical 
result ( 42 minK ) as function of c  and our numerical result 
obtained while recording the first value of K  for which 

( )1 2 1 3 1 4
1 | | | | | | < 0.05
3

x x x x x x− + − + −  (dashed lines). 

 

Figure 5. Synchronization boundaries in the case of four coupled 
oscillators 

Although the cluster domain obtained analytically is 
verified numerically, the oscillators lost their chaotic state. 

4. Experimental and Numerical Results 

4.1. Experimental Setup 
An experimental setup consisting of a network of four 

oscillators is shown in Figure 6. The networks of two and 
three oscillators can be derived from Figure 6 by choosing 
the suitable connections. In the set of equations (13), (19) 
and (23) the variables jx , jy  and jz  are the voltages 

across the capacitors, 1 jC , 2 jC  and 3 jC  respectively. 
The coupling strength between oscillators is controlled by 
four variable resistors cjR . The circuits are built using 
(TL082) Operational Amplifiers, (BBY40) Diodes, 
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Capacitances and Resistances. The nominal values of the 
components can be found in Table 1. Due to the tolerances 
of the components, oscillators are slightly different. 
Therefore synchronization in the sense that 
| ( ) ( ) |= 0i ju t u t−  is not possible and practical 

synchronization is defined as | ( ) ( ) |i ju t u t δ− ≤  with 
1δ  .  

 

Figure 6. Electronic schematic of overall system 

4.2 Experimental and numerical results 
Before the coupling, Figure 7(a) shows a phase portrait 

of the first oscillator, which corresponds to a chaotic phase 
portrait (Figure 7(b)) obtained numerically with the 
following normalized parameters: 1 1= 3.522, = 0.513,a b  

1 = 2.511c  and 1 = 1.264d . 

 

Figure 7. Phase portrait of one oscillator before the coupling. a) 
Experimentally obtained, b) Numerically plot 

Maintaining the same parameters used in Figure 7, we 
show in Figure 8 the phase portraits ( 1x , 2x ) to illustrate 
the absence of synchronization in the system before the 
coupling. 

 

Figure 8. Phase portrait in the plane ( 1x , 2x ) before the coupling. a) 
Experimental result, b) Numerical result 

After setting the coupling, we decrease the values of the 
resistances cjR  to find experimentally the synchronization 
domain. 

Table 1. Values of capacitors and resistances used in the overall 
electronic circuit 

( )

(

Resistances  
and 

Capacitances nF

Ω

 

( )

First
Oscillator

= 1j
 

( )

Second
Oscillator

= 2j
 

( )

Third
Oscillator

= 3j
 

( )

Fourth
Oscillator

= 4j
 

1 jC  12.0  12.5  12.6  12.3  

2 jC  192.8  201.2  202.6  198.0  

3 jC  10.1 10.2  10.2  10.2  

1 jR  177.4  170.2  168.8  173.1 

2 jR  1218  1158  1154  1170  

3 jR  9437  9329  9366  9337  

4 jR  248.9  238.7  238.7  242.3  

5 jR  11920  11810  11810  11820  

6 jR  10040  10060  10050  10060  

7 jR  35100  35140  35170  35110  

8 9,j jR R  418 10⋅  
418 10⋅  

418 10⋅  
418 10⋅  

4.2.1. Two Oscillators 
In this case, we find that for 400cjR ≤ Ω , ( = 1,2)j , 

the system falls in the synchronization. Figure 9(a) and 
9(b) illustrate the complete synchronization state of the 
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ring for 1 = 315.0cR Ω , 2 = 318.7cR Ω  and 1 = 0.813K , 

2 = 0.815K . Another used parameters are the following: 

1 1 1 1= 3.522, = 0.513, = 2.511, = 1.264a b c d , 

2 = 3.518,a  2 2= 0.517, = 2.508b c  and 2 = 1.266d . 

  

Figure 9. Phase portraits in the plane ( 1x , 2x ) illustrating 
synchronization in the ring of two coupled oscillators. a) Experimental 
result, b) Numerically plot 

4.2.2. Three oscillators 
In the case of three coupled oscillators, when the 

coupling resistances satisfy 298cjR ≤ Ω , ( = 1,2,3)j , the 
ring is in the complete synchronization. To prove it, we 
plot in Figure 10 some phase portraits: Figure 10(a) (resp. 
Figure 10(c)) represents our experimental result in the 
plane ( 1x , 2x ) (resp. ( 1x , 3x )) while Figure 10(b) (resp. 
Figure 10(d)) is its numerical analogous. The coupling 
resistances are 1 = 237.2cR Ω , 2 = 240.5cR Ω , 

3 = 237.8cR Ω  and 1 = 0.53K , 2 = 0.52K , 3 = 0.55K . 
Other parameters are keep constant: 

1 1= 3.522, = 0.513,a b  1 = 2.511,c 1 = 1.264d , 

2 = 3.518,a  2 = 0.517,b  2 = 2.508c , 2 = 1.266d , 

3 = 3.525,a  3 = 0.515,b  3 = 2.513c  and 3 = 1.261d . 

 

Figure 10. Phase portraits illustrating the complete synchronization in 
the ring of three coupled oscillators. a) Experimental result in the plane 
( 1x , 2x ), b) Numerically plot in the plane ( 1x , 2x ), c) Experimental 

result in the plane ( 1x , 3x ), d) Numerically plot in the plane ( 1x , 3x ) 

4.2.3. Four Oscillators 
Although the analytical study foresaw a cluster 

synchronization, the numerical and the experimental 
studies showed only a complete synchronization state. 
This is obtain experimentally when 345cjR ≤ Ω , 

( = 1,2,3,4)j . Proceeding as the above subsection, we 
plot in Figure 11 different phase portraits: Figure 11(a), 
Figure 11(c) and Figure 11(e) represent our experimental 
results drawn in the planes ( 1x , 2x ), ( 1x , 3x ) and ( 1x , 

4x ) respectively, while Figure 11 (b), Figure 11 (d) and 
Figure 11 (f) are their numerical corresponding. These 
following coupling parameters are used: 1 = 327.2cR Ω , 

1 = 325.5cR Ω , 1 = 328.4cR Ω , 1 = 324.8cR Ω  and 

1 = 8.03K , 2 = 8.025K , 3 = 8.027K , 4 = 8.031K , 

1 = 3.522,a  1 = 0.513,b  1 = 2.511,c  1 = 1.264d , 

2 = 3.518,a  2 = 0.517,b  2 = 2.508c , 2 = 1.266d , 

3 3 3= 3.525, = 0.515, = 2.513a b c , 3 = 1.261d , 

4 = 3.515,a  4 = 0.520,b  4 = 2.511c  and 4 = 1.265d .  

 

Figure 11. Phase portraits illustrating the complete synchronization in 
the ring of four coupled oscillators. a) Experimental result in the plane 
( 1x , 2x ), b) Numerically obtained in the plane ( 1x , 2x ), c) 

Experimental result in the plane ( 1x , 3x ), d) Numerically obtained in 

the plane ( 1x , 3x ), e) Experimental result in the plane ( 1x , 4x ), f) 

Numerically obtained in the plane ( 1x , 4x ) 
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5. Conclusion 
In this paper, theoretical and experimental complete 

synchronization of diffusively two, three and four coupled 
oscillators are presented. With the experimental setup it is 
impossible to achieve a zero synchronization error due to 
the tolerances of the electrical components. We obtain that 
three and four diffusely coupled oscillators synchronized 
or desynchronized together, provided initial values are 
chosen in the vicinity of the synchronization manifold. 
Despite the fact that the single harmonic response give in 
equation (9) may be questionable, the analytical treatment 
gives a good indication on the boundary of K  for 
synchronization to be achieved. The presented 
experimental results are qualitative comparable with 
numerical simulations. 
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