

Load Flow Assessment of the Nigeria 330-kV Power System

Ignatius K. Okakwu^{*}, Emmanuel A. Ogujor, Patrick A. Oriaifo

Department of Electrical/Electronic Engineering, Faculty of Engineering, University of Benin, Benin City, Nigeria *Corresponding author: igokakwu@yahoo.com

Abstract The Nigerian 330kV grid network is characterized with major problems like voltage instability (voltage profile violation), long transmission lines, nature of transmission lines and high power losses which affect power generation and distribution systems. This paper considered the load-flow study of the Nigerian 330-kV consisting of 32 buses, 11 generating stations and 36 transmission lines. Newton-Raphson iteration technique was used to carry out the analysis because of its fast convergence nature as compared to other iterative techniques. The data used for the study is obtained from Power Holding Company of Nigeria (PHCN). MATLAB/SIMULINK software was used to carry out the simulations. The results obtained shows that some of the bus voltages lie outside the prescribed limit of 0.95-1.05 pu (313.5 – 346.5kV). These buses include buses 16 (Kano 0.8721pu), 17(Kaduna, 0.9046pu), 18(Jos, 0.8580pu), 19(Gombe 0.8735pu) and 21(Katampe, 0.9167pu). The total active power loss is 268.622MW and that of reactive power loss is 2247.42Mvar. It is therefore inferred from the results obtained that the existing Nigerian 330-kV grid network is fraught with high line losses that require compensation using reactive power supports such as Flexible Alternating Current Transmission Systems (FACTS) devices, for effective line utilization.

Keywords: load flow, Newton Raphson, losses, voltage, transmission line

Cite This Article: Ignatius K. Okakwu, Emmanuel A. Ogujor, and Patrick A. Oriaifo, "Load Flow Assessment of the Nigeria 330-kV Power System." *American Journal of Electrical and Electronic Engineering*, vol. 5, no. 4 (2017): 159-165. doi: 10.12691/ajeee-5-4-6.

1. Introduction

Since Electrical Energy is the pivotal upon which a country's development is anchored, hence, the everincreasing demand of electric power. Power is usually generated at specific locations far from load centers before it is delivered to consumers through transmission and distribution systems. The Nigerian power system network, like any other networks elsewhere is made up of the large interconnected network that spans across the country nationwide. One of the main challenges combating this network is the fact that most Northern parts of the system usually experience poor voltage profile as a result of shortage of reactive power support. Other challenges include fragile transmission lines, inability of transmission lines to transport more than 400MW of power, radial network and high losses [1]. This study classifies buses whose voltages are extremely below statutory limit of ±5% (346.6kV [1.05pu] to 313.5kV [0.95pu] as a result of reactive power shortage as "weak buses". This problem is more amplified in relatively weak networks having high resistance to reactance ratios [1,2].

In load flow study, the main objective is to determine the complex bus voltages, and real and reactive power injected into the transmission system as well as real and reactive power at the slack bus with other parameters being specified. Load flow analysis usually finds its application during power network design and planning. It is also useful for obtaining the system behavior during operation in order to predict the loading conditions of transmission lines and equipment's within the system. The system is usually assumed to be operating under a balance condition such that the analysis can be carried out using a balanced single-phase representation [3].

2. Nigeria 330kV Transmission Network

The increasing demand for electricity in Nigeria like many other developing countries, is extremely greater than what is been generated, which results to the transmission network being heavily loaded and stressed beyond permissible limits. The Nigeria grid network consist of few generating stations like many other developing countries and his located mostly in remote areas near the raw materials required for generation. Power Holding Company of Nigeria (PHCN) has the statutory function of generation, transmission, distribution and marketing of electricity in Nigeria. The single line diagram (Figure 1) of the Nigeria 330kV network consist of eleven (11) generating stations comprising of three (3) hydro and eight (8) thermal, twenty one (21) load stations and thirty six (36) transmission lines with a total installed capacity of 6500MW. The thermal generating stations are mainly located in the Southern part of the country like Okpai, Afam, Sapele, Delta (Ughelli), Egbin, Olorunshogo and

Omotosho, while the hydro generating stations are located mainly in the Middle Belt/Northern part of the country like Kainji, Shiroro and Jebba [4].The Nigeria 330-kV grid network can be grouped into three (3) sections: North, South-east and South-west sections. The Northern and South-west are connected through one double circuit between Jebba TS and Oshogbo. The South-East is connected to the South-West through a single line from Osogbo to Benin and then one double circuit line from Ikeja West to Benin. The line diagram and data of the Nigerian 330kV grid network were sourced from the National Control Centre (NCC) of the PHCN, Oshogbo, Nigeria [5].

3. Data Collection

The data used for this study were obtained from Power Holding Company of Nigeria (PHCN) and are presented in Table 1 and Table 2. Computer software programmed using MATLAB/SIMULINK were used in conducting the simulation.

S/N	Transmission line		Length	Impedance		Shunt Admittance
	From	То	L(km)	Resistance (Rpu)	Inductance (Xpu)	1/2 Bpu (S)
1	Egbin G.S	Ikeja West	62	0.001122	0.008625	0.064345
2	Egbin G.S	Aja	14	0.000253	0.001948	0.014529
3	Benin	Ikeja West	280	0.005065	0.038953	0.290589
4	Benin	Omotosho G.S	51	0.001826	0.015501	0.096916
5	Benin	Oshogbo	251	0.008989	0.076291	0.476977
6	Benin	Ajaokuta	195	0.003492	0.029635	0.18528
7	Benin	Onitsha	137	0.002453	0.02082	0.130171
8	Benin	Sapele G.S	50	0.000904	0.006956	0.051891
9	Benin	Delta G.S	41	0.001468	0.012462	0.077913
10	Ikeja West	Akangba	17	0.000304	0.002584	0.016`53
11	Ikeja West	Sakete	70	0.002507	0.021276	0.133021
12	Ikeja West	Olorunshogo G.S	30	0.001074	0.009118	0.057009
13	Ikeja West	Omotosho G.S	200	0.007163	0.06079	0.380061
14	Ikeja West	Oshogbo	250	0.008953	0.075987	0.475077
15	Aiyede	Olorunshogo G.S	60	0.002149	0.018237	0.114018
16	Aiyede	Oshogbo	115	0.004118	0.034954	0.218535
17	Oshogbo	Ganmo	75	0.002686	0.022796	0.142523
18	Oshogbo	Jebba T.S	157	0.002811	0.02386	0.149174
19	Ganmo	Jebba T.S	80	0.002865	0.024316	0.152025
20	Shiroro	Jebba T.S	244	0.004369	0.037082	0.231837
21	Shiroro	Kaduna	96	0.001719	0.01459	0.091215
22	Shiroro	Katampe	218	0.003944	0.030328	0.226244
23	Jebba T.S	Jebba G.S	8	0.000145	0.001113	0.008303
24	Jebba T.S	Kainji G.S	81	0.00145	0.01231	0.076962
25	Birnin Kebbi	Kainji G.S	310	0.005551	0.047112	0.589095
26	Kano	Kaduna	230	0.004118	0.034954	0.43707
27	Kaduna	Jos	196	0.00351	0.029787	0.37246
28	Jos	Gombe	264	0.004727	0.040121	0.501681
29	Gombe	Yola	240	0.004298	0.036474	0.456074
30	Ajaokuta	Geregu G.S	1	0.000018	0.000139	0.001038
31	Onitsha	Alaoji	138	0.004942	0.041945	0.262242
32	Onitsha	New Haven	96	0.003438	0.029179	0.182429
33	Onitsha	Okpai G.S	60	0.001085	0.008347	0.062269
34	Alaoji	Afam G.S	25	0.000452	0.003478	0.025945
35	Sapele G.S	Aladja	63	0.002256	0.019149	0.119719
36	Delta G.S	Aladja	32	0.001146	0.009726	0.06081

Table 1. Nigeria 330kV Transmission Line Parameters

Bus No	Bus Name	Maximum Lo	oad Demand	Minimum Load Demand		
		MW	Mvar	MW	Mvar	
2	Benin	298	144(+75)	188	91	
3	Ikeja West	510	246(+75)	321	155	
4	Akangba	471	228	297	144	
5	Sakete	145	70	91	44	
6	Aiyede	270	130	170	82	
9	Oshogbo	235	114(+75)	148	72	
10	Ganmo	270	130	170	82	
12	Jebba T.S	412	199(+150)	260	125	
14	Birnin Kebbi	112	54(+30)	71	34	
16	Kano	250	121(+75)	157	76	
17	Kaduna	275	133(+75)	173	84	
18	Jos	141	68	89	43	
19	Gombe	180	87(+100)	113	55	
20	Yola	112	54	71	34	
21	Katampe	300	127	189	62	
22	Ajaokuta	96	46	60	29	
24	Onitsha	162	76	102	48	
25	Alaoji	266	124	167	78	
26	New Haven	235	110	148	69	
31	Aja	220	103	139	65	
32	Aladja	167	81	105	51	

Figure 1. Single line diagram of the Nigeria 330kV transmission network

4. The Load-flow Modelling

Consider an *n*- bus power system shown in Figure 2. The transmission lines are shown by their equivalent π model with the impedances converted to per unit admittances on a common MVA buses [6].

Figure 2. A typical bus of the power system

By applying Kirchhoff's Current Law (KCL) to bus i, we obtain

$$I_{i} = y_{io}V_{i} + y_{i1}(V_{i} - V_{1}) + y_{i2}(V_{i} - V_{2}) + \dots + y_{in}(V_{i} - V_{n})$$
(1)
$$= (y_{io} + y_{i1} + y_{i2} + \dots + y_{in})V_{i} - y_{i1}V_{1} - y_{i2}V_{2} - \dots - y_{in}V_{n}$$

Or

$$I_{i} = V_{i} \sum_{j=0}^{n} y_{ij} - \sum_{j=1}^{n} y_{ij} V_{j}, \quad j \neq i.$$
(2)

The real and reactive power at bus i is

$$S_i = P_i + jQ_i = V_i I_i^* \tag{3}$$

Or

$$I_i = \frac{P_i - jQ_i}{V_i^*} \tag{4}$$

Substituting for Ii in eqn. 2 yields

$$\frac{P_i - jQ_i}{V_i^*} = V_i \sum_{j=0}^n y_{ij} - \sum_{j=1}^n y_{ij}V_j, \ j \neq i.$$
(5)

The above mathematical formulation for load flow problems results in a system of nonlinear algebraic equations which must be solved by iterative methods. The commonly used methods for solving load flow problems are Gauss-Seidel, Newton-Raphson and Fast Decoupled techniques. In this paper, Newton-Raphson techniques is used because of its quadratic convergence property and ability to handle large power network [7] which are of paramount importance in solving nonlinear equations of power flow problems.

Equation. 2 can be re-written in terms of the bus admittance matrix as

$$I_{i} = \sum_{j=1}^{n} y_{ij} V_{j}.$$
 (6)

In the above equations, j includes bus i. expressing this equation in polar form, we have

$$I_{i} = \sum_{j=1}^{n} \left| Y_{ij} \right| \left| V_{j} \right| \angle \theta_{ij} + \delta_{j}.$$

$$\tag{7}$$

The complex power at bus i is Substitute equation 3 into equation 7,

$$P_i - jQ_i = |V_i| \angle \delta_i \sum_{j=1}^n |Y_{ij}| |V_j| \angle \theta_{ij} + \delta_j.$$
(8)

Separating the real and imaginary parts

$$P_{i} = \sum_{j=1}^{n} \left| V_{i} \right| \left| V_{j} \right| \left| Y_{ij} \right| Cos(\theta_{ij} - \delta_{i} + \delta_{j})$$
(9)

$$Q_i = -\sum_{j=1}^n |V_i| |V_j| |Y_{ij}| Sin(\theta_{ij} + \delta_i + \delta_j).$$
(10)

The load flow equations using Newton-Raphson techniques can therefore be written as

$$\begin{bmatrix} \Delta P_{2}^{(k)} \\ \vdots \\ \Delta P_{2}^{(k)} \\ \vdots \\ \Delta Q_{2}^{(k)} \\ \vdots \\ \Delta Q_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{2}^{(k)}}{\partial \delta_{2}} & \dots & \frac{\partial P_{2}^{(k)}}{\partial \delta_{n}} \\ \vdots & \vdots \\ \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} & \frac{\partial P_{n}^{(k)}}{\partial \delta_{n}} \\ \vdots & \vdots \\ \frac{\partial Q_{2}^{(k)}}{\partial \delta_{n}} & \frac{\partial Q_{2}^{(k)}}{\partial \delta_{n}} \\ \vdots & \vdots \\ \frac{\partial Q_{2}^{(k)}}{\partial \delta_{2}} & \dots & \frac{\partial Q_{2}^{(k)}}{\partial \delta_{n}} \end{bmatrix} \begin{bmatrix} \frac{\partial P_{2}^{(k)}}{\partial |V_{2}|} & \dots & \frac{\partial P_{2}^{(k)}}{\partial |V_{n}|} \\ \frac{\partial P_{n}^{(k)}}{\partial |V_{2}|} & \dots & \frac{\partial P_{n}^{(k)}}{\partial |V_{n}|} \\ \frac{\partial Q_{2}^{(k)}}{\partial |V_{2}|} & \frac{\partial Q_{n}^{(k)}}{\partial |V_{n}|} \\ \vdots & \vdots \\ \frac{\partial Q_{n}^{(k)}}{\partial |V_{2}|} & \dots & \frac{\partial Q_{n}^{(k)}}{\partial |V_{n}|} \end{bmatrix} \begin{bmatrix} \Delta \delta_{2}^{(k)} \\ \vdots \\ \Delta \delta_{n}^{(k)} \\ \frac{\partial V_{2}^{(k)}}{\partial |V_{2}|} \\ \vdots \\ \Delta V_{n}^{(k)} \end{bmatrix} \end{bmatrix}$$

In a compact form, it can be written as [2]

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$$
(11)

Where J_1 , J_2 , J_3 and J_4 are sub-matrices of the Jacobian matrix, which are expressed as

For J₁

Diagonal element:

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{\substack{j=1\\j\neq i}}^n |V_i| |V_j| |Y_{ij}| \operatorname{Sin}(\theta_{ij} - \delta_i + \delta_j).$$

Off-diagonal element:

$$\frac{\partial P_i}{\partial \delta_i} = -\left| V_i \right| \left| V_j \right| \left| Y_{ij} \right| Sin(\theta_i - \delta_i + \delta_j), \quad j \neq i.$$

For J₂

Diagonal element:

$$\frac{\partial P_i}{\partial |V_i|} = 2|V_i| |Y_{ij}| \cos\theta_{ij} + \sum_{\substack{j=1\\j\neq i}} |V_j| |Y_{ij}|, \cos(\theta_{ij} - \delta_i + \delta_j)$$

Off-diagonal element:

$$\frac{\partial P_{i}}{\partial \left|V_{j}\right|} = \left|V_{i}\right| \left|Y_{ij}\right| Cos(\theta_{ij} - \delta_{i} + \delta_{j}), \ j \neq i$$

For J₃

Diagonal element:

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{\substack{j=1\\j\neq i}} |V_i| |V_j| |Y_{ij}| Cos(\theta_{ij} - \delta_i + \delta_j)$$

Off-diagonal element:

$$\frac{\partial Q_i}{\partial \delta_j} = -|V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j), \ j \neq i.$$

For J₄

Diagonal element:

$$\frac{\partial Q_i}{\partial |V_i|} = -2|V_i| |Y_{ii}| \sin\theta_{ii} - \sum_{\substack{j \\ j \neq i}} |V_j| |Y_{ij}|, \sin(\theta_{ij} - \delta_i + \delta_j)$$

Off-diagonal element:

$$\frac{\partial Q_i}{\partial |V_i|} = -|V_i| |v_J| |Y_{ij}| Sin(\theta_{ij} - \delta_i + \delta_j), j \neq i.$$

The terms $\Delta P_i^{(k)}$ and $\Delta Q_i^{(k)}$ are the difference between the scheduled and calculated values and represents the column vector of the control variables at the PV and PQ buses and are given by

$$\Delta P_i^{(k)} = P_i^{sch} - P_i^{(k)} \tag{12}$$

$$\Delta Q_i^{(k)} = Q_i^{sch} - Q_i^{(k)} \tag{13}$$

 $\begin{bmatrix} \Delta \delta_i \\ \Delta V_i \end{bmatrix}$ Represents the column vector of the state variables

at the PV and PQ buses. Gaussian elimination or triangular factorization method can be applied to equation 11 in order to determine the unknown vectors $\Delta \delta_i$ and ΔV_i updated value of the voltage angles at all buses except slack bus [8].

The complex power that flows through the transmission line connecting any two buses *i* and *j* as a result of the injection at bus *i* and *j* respectively are S_{ij} and S_{ji} . These can be expressed mathematically as

$$S_{Li} = V_i I_{ij}^* \tag{14}$$

$$S_{ji} = V_j I_{ji}^*.$$
 (15)

The power loss in line i-j is the algebraic sum of the power flow determined from equations 14 and 15, i.e.

$$S_{Lij} = S_{ij} + S_{ji}. aga{16}$$

5. Results and Discussion

The simulation results obtained are presented in Table 3 and Table 4. Table 3 presents the results of the voltage magnitudes and angles at various network buses while Table 4 presents the results obtained for the power flow and losses along the transmission lines within the network.

Table 3. Bus voltages and phase angle for the Nigerian 330kV Network

Bus Number	Bus Number Bus Name		Angle(degree)	
1	1 Egbin GS.		0.0000	
2	Benin	1.0063	6.9193	
3	Ikeja west	0.9811	-4.7260	
4	Akangba	0.9735	-5.4148	
5	Sakete	0.9623	-7.1567	
6	Aiyede	0.9471	-13.6748	
7	Olorunshogo G.S	0.9800	-6.4793	
8	Omotosho G.S	1.0200	6.8160	
9	Oshogbo	0.9578	-22.0787	
10	Ganmo	0.9603	-27.6345	
11	Shiroro G.S	0.9700	-55.7140	
12	Jebba T.S	1.0026	-29.5556	
13	Jebba G.S	1.0100	-29.2973	
14	Birnin Kebbi	1.0302	-29.1309	
15	Kainji G.S	1.0200	-26.1358	
16	Kano	0.8721	-76.2603	
17	Kaduna	0.9046	-67.3781	
18	Jos	0.8731	-78.0406	
19	Gombe	0.8735	-87.1135	
20	Yola	0.8580	-90.1711	
21	Katampe	0.9167	-61.3107	
22	Ajaokuta	1.0199	12.0747	
23	Geregu G.S	1.0200	12.1056	
24	Onitsha	1.0059	9.0862	
25	Alaoji	1.0145	12.9354	
26	New Haven	0.9673	5.2336	
27	Sapele G.s	1.0200	9.0861	
28	Delta G.S	1.0200	10.2525	
29	Okpai G.S	1.0200	10.9691	
30	Afam G.S	1.0200	13.7384	
31	Aja	1.0376	-0.2139	
32	Aladja	1.0147	9.2895	

_	То	Sending End		Receiving End		Line Losses	
From		Р	Q	Р	Q	Real Power	Reactive Power
1	3	1054.483	613.736	-1039.041	-495.031	15.442	118.705
1	31	220.138	102.498	-220.0000	-101.436	0.138	1.062
2	3	518.107	50.073	-504.556	54.144	13.551	104.217
2	8	1.462	-88.934	-1.319	90.145	0.143	1.211
2	9	629.904	148.23	-592.734	167.236	37.17	315.466
2	22	-310.642	4.659	313.97	23.587	3.328	28.246
2	24	-180.692	26.694	181.5	-19.835	0.808	6.859
2	27	-572.59	-112.86	575.631	136.255	3.041	23.395
2	28	-483.549	-39.526	486.961	68.492	3.412	28.966
3	4	471.876	233.916	-471	-226.469	0.876	7.447
3	5	196.119	67.181	-195	-57.681	1.119	9.5
3	7	320.102	-21.358	-318.953	31.109	1.149	9.751
3	8	-328.292	9.128	336.319	58.995	8.027	68.123
3	9	373.791	42.331	-360.628	69.391	13.163	111.722
6	7	-643.946	-55.042	653.953	139.969	10.007	84.927
6	9	373.946	-45.13	-367.432	100.418	6.514	55.288
9	10	386.215	-37.426	-381.806	74.843	4.409	37.417
9	12	499.58	-204.486	-490.65	280.282	8.93	75.796
10	12	111.806	-177.678	-110.437	189.297	1.369	11.619
11	12	-1118.996	315.278	1181.754	217.385	62.758	532.663
11	17	1264.225	409.975	-1231.955	-136.078	32.27	273.897
11	21	304.771	144.672	-300	-107.986	4.771	36.686
12	13	-489.125	-605.857	490	612.571	0.875	6.714
12	15	-503.542	-67.96	507.266	99.579	3.724	31.619
14	15	-112	38.52	112.734	-32.293	0.734	6.227
16	17	-350	-12.757	356.642	69.127	6.642	56.37
17	18	500.313	82.66	-489.284	10.941	11.029	93.601
18	19	298.284	-12.312	-292.757	59.224	5.527	46.912
19	20	112.757	26.852	-112	-20.429	0.757	6.423
22	23	-409.97	-50.208	410	50.436	0.03	0.228
24	25	-162.846	4.085	164.142	6.914	1.296	10.999
24	26	237.347	112.848	-235	-92.932	2.347	19.916
24	29	-418	-108.63	420	124.016	2	15.386
25	30	-430.142	-101.253	431	107.852	0.858	6.599
27	32	-15.631	30.191	15.656	-29.979	0.025	0.212
28	32	183.039	35.685	-182.656	-32.434	0.383	3.251
			TOTAL POWER LOSS			268.622	2247.42

Table 4. Transmission Line Power flow for the Nigerian 330kV Network

Figure 3. Bar chart showing voltage magnitude

Figure 3 is a bar chart plot which shows the graphical display of the voltage magnitude against bus number for the Nigerian 330kV grid network.

The Nigerian 330kV consisting of 32 buses was simulated based on Newton-Raphson power flow algorithm using MATLAB/SIMULINK software. The data used for the study were obtained from Power Holding Company of Nigeria (PHCN). Based on the results obtained, it was found that the total active power loss from the power flow program solutions by Newton Raphson method is 268.622MW and that of the reactive power loss is 2247.420Mvar. The results obtained also identify some weak buses with values outside the statutory limit of 0.95 pu or 313.5kV and1.05pu or 346.5kV. These weak buses include: (Kano, 0.8721pu), (Kaduna, 0.9046pu), (Jos, 0.8731pu), (Gombe, 0.8735pu), (Yola, 0.8580pu) and (Katampe, 0.9167pu). The result further showed that the losses are still very high and these weak buses are located within the Northern part of the network. This could be as a result of the fact that they are very far from the location of generating stations within the system.

6. Conclusion

In this paper, the load flow study for the Nigerian 330-kV grid network using Newton-Raphson iteration techniques was modeled using MATLAB/SIMULINK software. The result shows that the Nigerian 330kV grid network is characterized with various problems like voltage instability (voltage profile violation), problem of long transmission lines, nature of transmission lines and poor power quality, most especially, within the Northern areas of the network under consideration. Also, the result reveals that the reactive power loss in the Nigerian 330kV grid network is still very high, hence, the need for reactive

power compensation. Furthermore, more substations and additional lines should be introduced into the grid network to provide more loops in the existing 330kV such that the voltage profile of the network will be greatly enhanced, especially Kano, Kaduna, Jos, Gombe, Yola and Katampe where voltage dip is severe.

References

- Omorogiuwa Eseosa and Emmanuel A. Ogujor. Determination of bus voltages, power losses and flows in the Nigeria 330kV integrated power system. International Journal of Advances in Engineering and Technology. 2012; 4: 94-106.
- [2] Akintunde S. Alayande, Adisa A. Jimoh and Adedayo A. Yusuff. Voltage profiles and loss reduction in weak meshed network. Proceedings of the IASTED International Conference, Power and Energy System. 2014; 220-226.
- [3] Nagesh H. and Puttaswanmy P. Enhancement of voltage stability Margin using FACTS Controllers. International Journal of Computer and Electrical Engineering. 2013; 5:161-265.
- [4] Izuegbunam F., Duruibe S. and Ojukwu G. Power Flow Contingency Assessment Simulation of the expanded 330kV Nigeria Grid using Power World Simulator. Journal of Emerging Trends in Engineering and Applied Sciences. 2011; 2:1002-1008.
- [5] Aribi, F., Nwohu M., Sadiq A. and Ambafi J. Voltage profile enhancement of the Nigerian North-East 330kV Power Network using STATCOM. International Journal of Advanced Research in Science, Engineering and Technology. 2015; 2:330-337.
- [6] Ademola A., Awosope C., Samuel I. and Agbetuyi A. Contingency Analysis for assessing line losses in Nigeria 330kV power lines. 2016; 5: 66-78.
- [7] Jokojeje R., Adejumobi I., Mustapha A. and Adebisi O. Application of STATCOM in improving power station performance: A Case Study of the Nigeria 330kV Electricity Grid. Nigerian Advanced Journal of Technology (NIJOTECH). 2015; 34: 564-572.
- [8] Mashauri A. Load Flow Solution of the Tanzania power network using Newton-Raphson method and MATLAB software. International Journal of Energy and Power Engineering. 2014; 277-286.