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Abstract  This paper presents a state-variable synthesis of a class of electronically-controllable sinusoidal 
oscillator circuits which employ Multiple output second generation controlled current conveyors (CCCII) as active 
elements, do not require any external passive resistors and employ only two grounded capacitors (GC). The 
systematic synthesis yields a class of fourteen new oscillators all of which provide independent electronic controls of 
both the frequency of oscillation and condition of oscillation through separate external bias currents. All the 
aforementioned features make the synthesized oscillators attractive from the view point of integrated circuit 
implementation. The workability of the derived circuits has been confirmed from SPICE simulations and some 
sample results are included. Based upon their performance, evaluated through simulations, the new circuits have 
been compared with those previously known as well as among themselves and the best circuits of the derived set 
have been identified. 
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1. Introduction 

Sinusoidal oscillators are needed in a wide range of 
applications in electronics, communication, instrumentation, 
measurement, control systems etc. Therefore, sinusoidal 
oscillators have been extensively investigated and their 
numerous new types of realisations have been proposed in 
the past using a variety of active circuit building blocks. 
The survey of the existing literature shows that a large number 
of circuits have been proposed to realise voltage-mode, 
current-mode and mixed-mode sinusoidal oscillator circuits. 
Moreover, there has been a major emphasis in the earlier 
literature on the realisation of single-element-controlled 
oscillators using different active building blocks, such as 
voltage-mode operational amplifiers (VOA), operational 
transconductance amplifiers (OTA), different types of 
current conveyors (CC), current feedback operational 
amplifiers (CFOA), four terminal floating nullors (FTFN), 
current followers (CF) and voltage followers (VF), current 
differencing buffered amplifiers (CDBA), current differencing 
transconductance amplifiers (CDTA), operational trans-
resistance amplifiers (OTRA), differential difference 
complementary current conveyors (DDCCC), differential 
difference complementary current feedback amplifiers 
(DDCCFA), differential difference amplifiers (DDA), 

differential voltage current feedback amplifiers (DVCFA) 
etc. for instance, see [1-20] and the references cited therein. 

The sinusoidal oscillators being presented in this paper 
have been synthesized through a state-variable methodology 
using the translinear second generation current controlled 
conveyors (CCCIIs) introduced by Fabre-Saaid-Wiest-
Boucheron [21,22] as the active building blocks.  

A CCCII has finite input resistance Rx looking into the 
X-terminal of the CCCII which is given by Rx=VT/2IB 
(where VT is the thermal voltage) which is electronically 
controllable by an external bias current IB. Because of this 
characteristic, the CCCII has been found to be particularly 
suitable for the realization of electronically-controllable 
functional circuits, including oscillators. Consequently, 
during the past two decades, a number of sinusoidal 
oscillator circuits based on CCCIIs have been reported in 
the literature [23-40]. However, most of the existing 
CCCII-based oscillators suffer from one or more of the 
following drawbacks: (i) employment of dissimilar types 
of building blocks as in [23,29,34], (ii) use of an excessive 
number of active elements as in [34,36,40] (iii) non-availability 
of independent electronic controls of the frequency of 
oscillation (FO) and condition of oscillation (CO) both  
as in [23,28-33,35,36,38] (iv) use of external passive 
resistors also as in [26,35,36] and (v) the use of floating 
capacitor(s) as in [29,35,36], which are not convenient for 
IC implementation. 
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This paper presents a systematic state-variable 
synthesis of a class of new CCCII-based sinusoidal 
oscillator circuits which are free from all the drawbacks 
mentioned above in that they employ a minimum of only 
three multiple-output CCCIIs (MO-CCCII) as active 
elements, need no external passive resistors and employ 
both grounded capacitors (GC), as desirable for IC 
implementation [8,43,44].  

2. State-variable Synthesis of  
CCCII-based Oscillators 

The state-variable approach to oscillator synthesis was 
introduced by Senani and Gupta in [5] and subsequently 
extended by Gupta and Senani in [6,7], in the context of 
CFOA-based oscillators.  

Since then, the state-variable approach of [5,6,7]  
has been subsequently used to synthesize a class of 
DDCCC-based SRCOs using all grounded passive 
elements in [8], a class of grounded-capacitor single 
resistance controlled oscillators (SRCO) using a single 
DDCCFA in [9], oscillators with explicit-current-output in 
[10,11], linear VCOs in [12,13], SRCOs using differential 
difference amplifiers (DDA) in [14], and more recently, 
SRCOs using third generation current conveyors (CCIII) 
in [15]. Another extension of the state-variable method 
was also carried out by Güneş and Toker in [16] to derive 
a class of oscillators using DVCFAs. 

Here, we extend the state-variable synthesis 
methodology of [5,6,7] for deriving new CCCII-based 
oscillators.  

The CCCII± is characterised by the terminal equations: 
𝐼𝐼𝑦𝑦 = 0, 𝑉𝑉𝑥𝑥 = 𝑉𝑉𝑦𝑦 + 𝑅𝑅𝑥𝑥𝐼𝐼𝑥𝑥  and 𝐼𝐼𝑧𝑧 = ±𝐼𝐼𝑥𝑥  where 𝑅𝑅𝑥𝑥 = 𝑉𝑉𝑇𝑇 2𝐼𝐼𝐵𝐵⁄  
and is, therefore, electronically-controllable through the 
external dc bias current IB. 

The basic state-variable methodology to synthesize 
sinusoidal oscillators providing independent controls of 
FO and CO, as proposed in [5], can be reiterated as 
follows: 

A canonic second-order (i.e. employing only two 
capacitors) oscillator can be characterized by the 
following autonomous state equation: 

 1 11 12 1

2 21 22 2
.

x a a x
x a a x
     

=     
     





 (1) 

From the above, the characteristic equation (CE) 

 ( ) ( )2
11 22 11 22 12 21 0s a a s a a a a− + + − =  (2) 

gives the CO and FO as  

 ( )11 22 0a a+ =  (3) 

and  

 ( )2
0 11 22 12 21a a a aω = −  (4) 

The state variable synthesis methodology [5] involves, 
an a priori selection of the parameters 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, 2; 
𝑖𝑖 = 1, 2,  in accordance with the required features  
(e.g. independent control for CO and FO through separate  
 

resistors), conversion of the resulting state equations  
into the node equations (NE) and finally, constructing a 
physical circuit from these NEs by using the chosen active 
building block and RC elements. 

In the following, we choose the same types of matrices 
as introduced in [5,6,7], but employ the intrinsic input 
resistances Rx of the CCCIIs instead of the external 
resistors and demonstrate how a class of new 
electronically-controlled oscillators, not known earlier, 
can be systematically synthesized using this approach. 

It must be kept in mind that in all the circuits derived in 
the following, the resistors Rx1, Rx2 and Rx3 are not the 
physical resistors but the intrinsic X-port input resistances 
of the CCCIIs employed which are electronically-controllable 
by respective external dc bias currents. 

In the following, we first show the synthesis of one 
exemplary circuit explicitly and subsequently, the remaining 
types of [A] matrices suitable for the present purpose, 
along with the synthesized CCCII-based oscillators 
resulting therefrom and their COs and FOs would be 
presented directly in tabular form to conserve space.  

For the realization of a current-controlled oscillator 
providing independent controls of both CO and FO, and 
following the ideas contained in [5,6,7], let us choose the 
elements of the [A] matrix as: 

 [ ] 1 1 3 1 1 2 3

2 3 2 3

1 1 1 1 1 1 1

.
1 1

x x x x x

x x

C R R C R R R
A

C R C R

    
− − + −    

    =  
 −
  

 (5) 

From Eqn. 5, the characteristic equation of the 
oscillator, having [A] matrix as above, is given by  

 2

1 1 1 3 2 3 1 2 2 3

1 1 1 1 0
x x x x x

s s
C R C R C R C C R R

 
− − − + = 
 

 (6) 

from where the CO and FO are found to be: 

 1

1 3 2

1 1 1
x x

C
R R C

 
= + 

 
 (7) 

and  

 0
1 2 2 3

1 .
2 x x

f
C C R Rπ

=  (8)  

Thus, as intended, indeed, CO and FO both are 
independently controllable without affecting each other; 
the former by Rx1 and the latter by Rx2. 

Now, substituting eqn. (5) in (1), the resulting NEs can 
be written as  

 1 2 1 2 1 2
1

2 3 1
.

x x x

dx x x x x xC
dt R R R

− −
+ + =  (9) 

 2 1 2
2

3
.

x

dx x xC
dt R

−
=  (10) 

By using NEs (9) and (10), a physical oscillator circuit 
is synthesized as shown in Figure 1, wherein the 
construction of the circuit can be understood by observing 
the various currents marked on the diagram itself. 
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Figure 1. A new oscillator circuit realized by using NEs (9) and (10) 

Table 1. Various choices of the elements of the matrix [A] which lead to independent controls of CO and FO both 

No. The selected elements for [A] matrix CO FO 

1. 

⎣
⎢
⎢
⎡

1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

−
1
𝑅𝑅𝑥𝑥3

� −
1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

−
1
𝑅𝑅𝑥𝑥3

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦
⎥
⎥
⎤
 

1
𝑅𝑅𝑥𝑥1

=
1
𝑅𝑅𝑥𝑥3

�
𝐶𝐶1

𝐶𝐶2
+ 1� 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

2. 

⎣
⎢
⎢
⎡

1
𝐶𝐶1
�

2
𝑅𝑅𝑥𝑥1

−
1
𝑅𝑅𝑥𝑥3

� −
1
𝐶𝐶1
�

2
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

−
1
𝑅𝑅𝑥𝑥3

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦
⎥
⎥
⎤
 

2
𝑅𝑅𝑥𝑥1

=
1
𝑅𝑅𝑥𝑥3

�
𝐶𝐶1

𝐶𝐶2
+ 1� 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

3. 

⎣
⎢
⎢
⎡

1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

−
1
𝑅𝑅𝑥𝑥3

� −
1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
2
𝑅𝑅𝑥𝑥2

−
1
𝑅𝑅𝑥𝑥3

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦
⎥
⎥
⎤
 

1
𝑅𝑅𝑥𝑥1

=
1
𝑅𝑅𝑥𝑥3

�
𝐶𝐶1

𝐶𝐶2
+ 1� 

√2
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

4. 

⎣
⎢
⎢
⎡−

2
𝐶𝐶1𝑅𝑅𝑥𝑥1

1
𝐶𝐶1
�

2
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

�

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3

1
𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦

⎥
⎥
⎤
 𝐶𝐶1𝑅𝑅𝑥𝑥1 = 2𝐶𝐶2𝑅𝑅𝑥𝑥3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

5. 

⎣
⎢
⎢
⎡

2
𝐶𝐶1𝑅𝑅𝑥𝑥1

−
1
𝐶𝐶1
�

2
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦
⎥
⎥
⎤
 𝐶𝐶1𝑅𝑅𝑥𝑥1 = 2𝐶𝐶2𝑅𝑅𝑥𝑥3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

6. 

⎣
⎢
⎢
⎡

1
𝐶𝐶1𝑅𝑅𝑥𝑥1

−
1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
2
𝑅𝑅𝑥𝑥2

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦
⎥
⎥
⎤
 𝐶𝐶1𝑅𝑅𝑥𝑥1 = 𝐶𝐶2𝑅𝑅𝑥𝑥3 

√2
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

7. 

⎣
⎢
⎢
⎡−

1
𝐶𝐶1𝑅𝑅𝑥𝑥3

−
1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

−
1
𝑅𝑅𝑥𝑥3

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1
𝐶𝐶2
�

1
𝑅𝑅𝑥𝑥1

−
1
𝑅𝑅𝑥𝑥3

�
⎦
⎥
⎥
⎤
 

1
𝑅𝑅𝑥𝑥1

=
1
𝑅𝑅𝑥𝑥3

�
𝐶𝐶1

𝐶𝐶2
+ 1� 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

8. 

⎣
⎢
⎢
⎡

1
𝐶𝐶1
�

2
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

−
1
𝑅𝑅𝑥𝑥3

� −
1
𝐶𝐶1
�

2
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥2

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥2 ⎦
⎥
⎥
⎤
 

2
𝑅𝑅𝑥𝑥1

=
1
𝑅𝑅𝑥𝑥2

�
𝐶𝐶1

𝐶𝐶2
− 1�+

1
𝑅𝑅𝑥𝑥3

 

(with C1=C2=C, one needs 
Rx1=2Rx3) 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

9. 

⎣
⎢
⎢
⎡ 0

1
𝐶𝐶1𝑅𝑅𝑥𝑥2

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3

1
𝐶𝐶2
�

1
𝑅𝑅𝑥𝑥3

−
1
𝑅𝑅𝑥𝑥1

�
⎦
⎥
⎥
⎤
 𝑅𝑅𝑥𝑥1 = 𝑅𝑅𝑥𝑥3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

10. 

⎣
⎢
⎢
⎡ 0 −

1
𝐶𝐶1𝑅𝑅𝑥𝑥2

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1
𝐶𝐶2
�

1
𝑅𝑅𝑥𝑥3

−
1
𝑅𝑅𝑥𝑥1

�
⎦
⎥
⎥
⎤
 𝑅𝑅𝑥𝑥1 = 𝑅𝑅𝑥𝑥3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

11. 

⎣
⎢
⎢
⎡−

1
𝐶𝐶1𝑅𝑅𝑥𝑥1

1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

�

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3

1
𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦

⎥
⎥
⎤
 𝐶𝐶1𝑅𝑅𝑥𝑥1 = 𝐶𝐶2𝑅𝑅𝑥𝑥3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

12. 

⎣
⎢
⎢
⎡

1
𝐶𝐶1𝑅𝑅𝑥𝑥1

−
1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥3

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥3 ⎦
⎥
⎥
⎤
 𝐶𝐶1𝑅𝑅𝑥𝑥1 = 𝐶𝐶2𝑅𝑅𝑥𝑥3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

13. 

⎣
⎢
⎢
⎡−

1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

−
1
𝑅𝑅𝑥𝑥3

�
1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

�

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥2

1
𝐶𝐶2𝑅𝑅𝑥𝑥2 ⎦

⎥
⎥
⎤
 

1
𝑅𝑅𝑥𝑥1

=
1
𝑅𝑅𝑥𝑥2

�
𝐶𝐶1

𝐶𝐶2
− 1�+

1
𝑅𝑅𝑥𝑥3

 

with C1=C2=C, Rx1=Rx3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

14. 

⎣
⎢
⎢
⎡

1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

−
1
𝑅𝑅𝑥𝑥3

� −
1
𝐶𝐶1
�

1
𝑅𝑅𝑥𝑥1

+
1
𝑅𝑅𝑥𝑥2

�

1
𝐶𝐶2𝑅𝑅𝑥𝑥2

−
1

𝐶𝐶2𝑅𝑅𝑥𝑥2 ⎦
⎥
⎥
⎤
 

1
𝑅𝑅𝑥𝑥1

=
1
𝑅𝑅𝑥𝑥2

�
𝐶𝐶1

𝐶𝐶2
− 1�+

1
𝑅𝑅𝑥𝑥3

 

with C1=C2=C, Rx1=Rx3 

1
2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅𝑥𝑥2𝑅𝑅𝑥𝑥3

 

X

Y Z-

Z- X

Y
Z-

X

Y
Z-

IB3IB2IB1

C1 C2

x2
x1

C1

x2__
Rx2

x1______
Rx3

- x2( )

x1______
Rx1

- x2( )

x1______
Rx3

- x2( )

x1______
Rx1

- x2( )

x1______
Rx1

- x22( )

P

dx1
dt

___ C2
dx2
dt
___

1 2 3
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Since the CO is controllable by Rx1 while FO is 
independently controlled by Rx2, it follows that CO is 
electronically-controllable by IB1 whereas the FO is also 
independently electronically-controllable by IB2. 

In Table 1 we now show the fourteen possible choices 
of the matrices [A] which lead to independent controls of 
both CO and FO. These matrices have been constructed on 
the basis of those given in [5,6,7] but here we have used the 
intrinsic resistances Rxi; i=1-3 of the CCCIIs rather than 
any external resistors. The Table 1 also shows the CO and  
FO of the synthesized oscillators which result from these 
matrices using the methodology as explained in the above 
example. 

We can now write the following node equations 
resulting from the chosen 14 matrices of Table 1.  

The NEs from [A] matrix 1  

 ( ) ( )1 2 1 21 2
1

2 3 1x x

x x x xdx xC
dt R R Rx

− −
+ + =  (11a) 

 ( )1 22
2

3
.

x

x xdxC
dt R

−
=  (11b) 

The NEs from [A] matrix 2 

 ( ) ( )1 2 1 21 2
1

2 3 1

2

x x

x x x xdx xC
dt R Rx R

− −
+ + =  (12a) 

 ( )1 22
2

3
.

x

x xdxC
dt R

−
=  (12b) 

The NEs from [A] matrix 3 

 ( ) ( )1 2 1 21 2
1

2 3 1

2

x x x

x x x xdx xC
dt R R R

− −
+ + =  (13a) 

 ( )1 22
2

3
.

x

x xdxC
dt R

−
=  (13b) 

The NEs from [A] matrix 4 

 ( )2 11 2
1

1 2

2

x x

x xdx xC
dt R R

−
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 ( )2 12
2

3
.

x

x xdxC
dt R

−
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The NEs from [A] matrix 5 

 ( )1 21 2
1

2 1

2

x x

x xdx xC
dt R R

−
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 ( )1 22
2

3
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x

x xdxC
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The NEs from [A] matrix 6 
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1
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2

x x
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−
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The NEs from [A] matrix 7 
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The NEs from [A] matrix 8  
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The NEs from [A] matrix 9 

 1 2
1

2x

dx xC
dt R

=  (19a) 

 ( )2 12 2
2

1 3
.

x x

x xdx xC
dt R R

−
+ =  (19b) 

The NEs from [A] matrix 10 
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The NEs from [A] matrix 11 
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The NEs from [A] matrix 12 
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The NEs from [A] matrix 13 
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The NEs from [A] matrix 14 
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1

3 1 2x x x

x x x xdx xC
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 ( )1 22
2

2
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x
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The oscillators synthesized from the above 14 sets of 
node equations are shown in Figure 2 – Figure 5. The CO 
and FO would be as already given in Table 1. 
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Figure 2. New oscillator circuits realized by using NEs (11) to (14) 

 
Figure 3. New oscillator circuits realized by using NEs (15) to (18) 

 
Figure 4. New oscillator circuits synthesized from the NEs (19) to (22) 
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Figure 5. New oscillator circuits synthesized from the NEs (23) and (24) 

It may be mentioned that although three-CCCII-based 
oscillators possessing the intended properties mentioned in 
the Introduction, have been reported earlier also in references 
[24,25,27,37] none of the fourteen topologies presented 
here have been known earlier and hence, are completely new. 

3. Frequency Stability and Sensitivities 

Frequency stability is an important figure of merit  
on the basis of which different sinusoidal oscillators  
can be compared. We use the definition of frequency 

stability factor as ( )
1

,F

u

d u
S

du
ϕ

=

=  where 
0

u ω
ω

=  is the 

normalized frequency and 𝜑𝜑(𝑢𝑢)  represents the phase of 
the open loop transfer function of the oscillator circuit.  

Here we show the derivation of 𝑆𝑆𝐹𝐹 for the circuit of 
Figure 1. The open loop transfer function (with the link 
broken at point ‘P’ as shown in Figure 1) is found to be: 

 

( )

1 1
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.
1

out
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x x x x

I
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 (25) 

Thus, from Eqn. (25), the phase of the T(s) with the 
selection of component values as C1=C2=C, 2Rx1=Rx3=Rx 
and Rx2=Rx/n, is given by: 

 ( )
( )

( )
1 1

2

/ 2tan tan .
0 1

u n u nu
u n

ϕ − −
 
 = −  − 
 

 (26) 

Now, differentiating Eqn. (26) with respect to u, we get  

 ( )
( )

( )

2

22 2

2 1
.

1 4

n ud u
du n u u

ϕ
+

=
− +

  (27) 

From (27) the value of SF for this particular oscillator 
with u=1, is obtained to be 

 .FS n=   (28) 
Thus, the current-controlled oscillator of Figure 1 offers 

very good frequency stability factor for large values of n. 
By a similar analysis, it is found that the magnitude of 
𝑆𝑆𝐹𝐹is √𝑛𝑛 for oscillator 7 also whereas for all the remaining 
oscillators, 𝑆𝑆𝐹𝐹 is found to be 2√𝑛𝑛 . Thus, all the new 
oscillators enjoy excellent frequency stability properties. 

On the other hand, the sensitivity of ω0 with respect to 
Rxi; i=1-3 and the capacitances are found to be  
𝑆𝑆𝐶𝐶1
𝜔𝜔0 = 𝑆𝑆𝐶𝐶2

𝜔𝜔0 = 𝑆𝑆𝑅𝑅𝑥𝑥2
𝜔𝜔0 = 𝑆𝑆𝑅𝑅𝑥𝑥3

𝜔𝜔0 = −½  and 𝑆𝑆𝑅𝑅𝑥𝑥1
𝜔𝜔0 = 0 , which 

shows that all the oscillator circuits of Figure 2 to Figure 5 
also enjoy very low sensitivity properties.  

4. SPICE Simulation Results 
To check the workability of the synthesized new 

current-controlled oscillator circuits, SPICE simulations 
have been performed using the bipolar transistor parameters 
of PR100N (PNP) and NR100N (NPN) transistors [41]. 
All the circuits realized using MO-CCCII have been simulated 
in SPICE using the structure of the MO-CCCII shown in 
Figure 6, which is obtained by suitably augmenting the 
architecture proposed by Yuce, Kircay and Toker in [42]. 
The capacitor values used were C1=C2=100nF and the CO 
was adjusted through the variation of Rx1 which is a 
function of the bias current IB1. The FO was varied through 
the change of Rx2 which is a function of the bias current 
IB2 and the value of Rx3 was fixed through IB3. The three 
MO-CCCIIs were biased with ±2.5V DC power supplies. 
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Figure 6. MO-CCCII internal structure obtained by suitable augmentation of the circuit of [42] 
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Figure 7. The variation of oscillation frequency with respect to bias current for the oscillator circuit of Figure 5(b) (a) Transient response (b) Steady 
state response (C1=C2=100pF, IB1=2.086µA, IB2=12.83µA and IB3=1.3µA) and (c) variation of FO w.r.t. IB2 

The SPICE generated transient and steady state waveforms 
and the variation of FO w.r.t. IB2 were studied for all the 
fourteen oscillator circuits. With the exception of the 
circuit of Figure 4a which was found to be in latch-up1, all 
other circuits behaved as predicted by the theory.  

 To conserve space, we show here the simulation results 
only for the oscillator circuit of Figure 5(b). The output 
waveforms are shown in Figure 7(a) and Figure 7(b) 
whereas the variation of oscillation frequency w.r.t. IB2 is 
shown in Figure 7(c) by varying IB2 from 0.513µA to 
115.47µA corresponding to which f0 was found to vary 
from 99.965 kHz to 1500.00 kHz. The circuit exhibited 
excellent correspondence between IB2 and f0. The % total 
harmonic distortion (THD) in the generated waveform, at 
the frequency of 499.95 kHz, was found to be 3.55%. The 
workability of the oscillator circuit of Figure 5(b) is, thus, 
established by these simulation results. 

5. Comparison with Earlier Known 
CCCII-based Oscillators 

A comparison of the generated new oscillator circuits 
with those previously reported in [23-39] is shown in 

1 The study of latch-up behavior in CCCII-based oscillators is, as yet, 
unstudied phenomenon and constitutes an interesting problem for further 
research. 

Table 2 from where it is revealed that oscillators of  
[23,29] suffer from the drawback of employing dissimilar 
type of active elements; those in [34,36,39] use more  
than three active elements; those in [28,30,31,32,35,38] 
employ less than three CCCIIs but do not possess 
independent controls of both CO and FO. It turns out that 
only the earlier circuits of [24,25,27,37] use only three 
CCCIIs and two grounded capacitors, however, none of 
the 14 oscillators presented here are found to exist in  
any of these earlier works [24,25,27,37] and hence, are 
completely new. 

From the data given in seventh column of Table 2, it is 
revealed that the new circuits appear to have an edge over 
the quoted ones in terms of their comparatively larger 
frequency range of operation 100 kHz-1.5 MHz.  

Table 3 shows the operating frequency ranges and the  
% THD for all the fourteen synthesized oscillator circuits. 
From the data of all the 14 new circuits, it is found that 
comparatively, the circuit of Figure 5(b) appears to be the 
best in terms of largest possible tuning range, low THD 
and high  𝑆𝑆𝐹𝐹 . 

It may be mentioned that like the three CCCII-based 
oscillators of [37] which are realised by using a CMOS 
CCCII architecture implementable in 0.35µm CMOS 
technology, the circuits of this paper can also be 
implemented with any chosen CMOS CCCII structure 
since the kernel of the work reported here is not dependent 
on the technology used. 
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Table 2. Comparison of the synthesized new oscillators with the previously published CCCII-based Oscillators 

Ref. No. 

Number and 
type of 

building 
blocks used 

Whether 
same type 
of building 

blocks 
used? 

Does the circuit 
employ two 
grounded 

capacitors? 

Whether the 
circuit is external 

resistor-less? 

Whether CO 
and FO are 

independently 
adjustable? 

Frequency range 
Power 
supply 
used 

Technology 
used 

[23] 
2 CCCII, 
1 Current 

Mirror 
No Yes Yes No 1 kHz-3000 kHz ±2.5V Bipolar 

[24] 3 CCCII Yes Yes Yes Yes - ±2.5V Bipolar 

[25] 1 MOCCCII, 
2 CCCII+ Yes Yes Yes Yes 25 kHz-900 kHz ±2.5V Bipolar 

[26] 2 CCCII+, 
1 CCCII- Yes Yes No (1 grounded) Yes 3 kHz-1000 kHz ±2.5V Bipolar 

[27] 2 CCCII+, 
1 CCCII- Yes Yes Yes Yes 37 kHz-375 kHz ±2.5V Bipolar 

[28] 1 CCCII+, 
1 CCCII- Yes Yes Yes No 1 kHz-100 kHz ±5V Bipolar 

[29] 
1 MOCCCII, 

1 CCCII+, 
1 CCII± 

No No 
(1 Floating) Yes No - ±2.5V Bipolar 

[30] 1 MOCCCII, 
1 CCCII Yes Yes Yes No 212 kHz ±2.5V Bipolar 

[31] 1 MOCCCII, 
1 CCCII Yes Yes Yes No 212 kHz ±2.5V Bipolar 

[32] 2 MOCCCII Yes Yes Yes No - ±2.5V Bipolar 

[33] 
2 CCCII(-IR) Yes Yes Yes No 80 kHz-120 kHz ±2.5V Bipolar 

1 CCCII+, 
1 CCCII- Yes Yes Yes No 90 kHz-110 kHz ±2.5V Bipolar 

[34] 1 OTA, 
4 MOCCCII No Yes Yes Yes 200 kHz-1000 

kHz ±2.5V Bipolar 

[35] 1 CCCII+ Yes No 
(1 Floating) No,(1 grounded) No - ±1.0V 45nm 

CMOS 

[36] 

5 CCCII+ Yes No (1 Floating) 
No (1 grounded 

and 
1 floating) 

No 358 MHz-572 
MHz ±1.0V 0.18µm 

CMOS 

3 CCCII+, 
2 CCCII- Yes No (1 Floating) 

No (1 grounded 
and 

1 floating) 
No 470 MHz-694 

MHz ±1.0V 0.18µm 
CMOS 

[37] 3 MOCCCII Yes Yes Yes Yes 420 kHz-660 kHz ±2.5V 0.35µm 
CMOS 

[38] 1 CCCII+, 
1 CCCII- Yes Yes Yes No - ±1.25V 0.35µm 

CMOS 

[39] 3 CCCII+, 
1 CCCII- Yes Yes Yes Yes - ±2.5V Bipolar 

Proposed 3 MOCCCII Yes Yes Yes Yes 100 kHz-1500 
kHz ±2.5V Bipolar 

‘-‘: means the relevant information is not available, CCII: Second generation current conveyor, CCCII: Second generation current controlled conveyor, 
CCCII (-IR): negative intrinsic resistance CCCII, MOCCCII: Multiple output second generation controlled current conveyor, OTA: operational trans-
conductance amplifier. 

 
Table 3. Comparison of operating frequency range and % THD for 
the fourteen synthesized oscillators 

S. No. Frequency Range (kHz) THD (%) 
1. 100 – 900 3.972 (500.05kHz) 
2. 200 – 900 4.11 (500.00kHz) 
3. 100 – 800 3.374 (499.95kHz) 
4. 74 – 390* 5.576 (357.3kHz) 
5. 400 – 600 1.713 (500.05kHz) 
6. 300 – 500 2.186 (504.9kHz) 
7. 300 – 800 3.843 (500.00kHz) 
8. 400 – 1400 4.802 (499.85kHz) 
9. - - 
10. 200 – 500 3.119 (527.6kHz) 
11. 69 – 374* 4.856 (327kHz) 
12. 300 – 500 2.046 (500kHz) 
13. 138 – 209* 6.82 (209.9kHz) 
14. 100 – 1500 3.55 (499.95kHz) 

`-‘: the circuit exhibited latch-up. 

Thus, the CCCII-based new oscillator circuits 
synthesized and reported in this paper compare well with 
the CCCII-based oscillators previously reported in [23-40]. 

6. Concluding Remarks 

Fourteen new electronically-controllable sinusoidal 
oscillator circuits have been synthesized by using the 
state-variable approach of [5,6,7]. All the fourteen circuits 
have employed only three MO-CCCIIs and two grounded 
capacitors. The derived oscillator circuits provide the following 
desirable properties simultaneously: (i) employment of similar 
types of building blocks (ii) use of only three active 
elements (iii) availability of independent electronic controls 
of the FO and CO both (iv) complete elimination of external 
passive resistors and (v) the use of both grounded capacitor, 
as preferred for IC implementation. The workability of the 
proposed circuits has been verified by PSPICE simulations  
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and some sample simulation results were presented.  
This paper has, thus, added 14 new oscillator structures  
to the existing repertoire of three CCCII-based 
electronically-controllable oscillators of [24,25,27,37]. 
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