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Abstract This paper presents a state-variable synthesis of a class of electronically-controllable sinusoidal
oscillator circuits which employ Multiple output second generation controlled current conveyors (CCCII) as active
elements, do not require any external passive resistors and employ only two grounded capacitors (GC). The
systematic synthesis yields a class of fourteen new oscillators all of which provide independent electronic controls of
both the frequency of oscillation and condition of oscillation through separate external bias currents. All the
aforementioned features make the synthesized oscillators attractive from the view point of integrated circuit
implementation. The workability of the derived circuits has been confirmed from SPICE simulations and some
sample results are included. Based upon their performance, evaluated through simulations, the new circuits have
been compared with those previously known as well as among themselves and the best circuits of the derived set
have been identified.
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1. Introduction

Sinusoidal oscillators are needed in a wide range of
applications in electronics, communication, instrumentation,
measurement, control systems etc. Therefore, sinusoidal
oscillators have been extensively investigated and their
numerous new types of realisations have been proposed in
the past using a variety of active circuit building blocks.
The survey of the existing literature shows that a large number
of circuits have been proposed to realise voltage-mode,
current-mode and mixed-mode sinusoidal oscillator circuits.
Moreover, there has been a major emphasis in the earlier
literature on the realisation of single-element-controlled
oscillators using different active building blocks, such as
voltage-mode operational amplifiers (VOA), operational
transconductance amplifiers (OTA), different types of
current conveyors (CC), current feedback operational
amplifiers (CFOA), four terminal floating nullors (FTFN),
current followers (CF) and voltage followers (VF), current
differencing buffered amplifiers (CDBA), current differencing
transconductance amplifiers (CDTA), operational trans-
resistance amplifiers (OTRA), differential difference
complementary current conveyors (DDCCC), differential
difference complementary current feedback amplifiers
(DDCCFA), differential difference amplifiers (DDA),

differential voltage current feedback amplifiers (DVCFA)
etc. for instance, see [1-20] and the references cited therein.

The sinusoidal oscillators being presented in this paper
have been synthesized through a state-variable methodology
using the translinear second generation current controlled
conveyors (CCClIs) introduced by Fabre-Saaid-Wiest-
Boucheron [21,22] as the active building blocks.

A CCCII has finite input resistance Ry looking into the
X-terminal of the CCCIl which is given by R,=V+/2Ig
(where V+ is the thermal voltage) which is electronically
controllable by an external bias current Ig. Because of this
characteristic, the CCCII has been found to be particularly
suitable for the realization of electronically-controllable
functional circuits, including oscillators. Consequently,
during the past two decades, a number of sinusoidal
oscillator circuits based on CCCllIs have been reported in
the literature [23-40]. However, most of the existing
CCCllI-based oscillators suffer from one or more of the
following drawbacks: (i) employment of dissimilar types
of building blocks as in [23,29,34], (ii) use of an excessive
number of active elements as in [34,36,40] (iii) non-availability
of independent electronic controls of the frequency of
oscillation (FO) and condition of oscillation (CO) both
as in [23,28-33,35,36,38] (iv) use of external passive
resistors also as in [26,35,36] and (v) the use of floating
capacitor(s) as in [29,35,36], which are not convenient for
IC implementation.
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This paper presents a systematic state-variable
synthesis of a class of new CCCll-based sinusoidal
oscillator circuits which are free from all the drawbacks
mentioned above in that they employ a minimum of only
three multiple-output CCClls (MO-CCCII) as active
elements, need no external passive resistors and employ
both grounded capacitors (GC), as desirable for IC
implementation [8,43,44].

2. State-variable Synthesis of
CCClI-based Oscillators

The state-variable approach to oscillator synthesis was
introduced by Senani and Gupta in [5] and subsequently
extended by Gupta and Senani in [6,7], in the context of
CFOA-based oscillators.

Since then, the state-variable approach of [5,6,7]
has been subsequently used to synthesize a class of
DDCCC-based SRCOs wusing all grounded passive
elements in [8], a class of grounded-capacitor single
resistance controlled oscillators (SRCO) using a single
DDCCFA in [9], oscillators with explicit-current-output in
[10,11], linear VCOs in [12,13], SRCOs using differential
difference amplifiers (DDA) in [14], and more recently,
SRCOs using third generation current conveyors (CCIII)
in [15]. Another extension of the state-variable method
was also carried out by Giines and Toker in [16] to derive
a class of oscillators using DVCFAs.

Here, we extend the state-variable synthesis
methodology of [5,6,7] for deriving new CCClI-based
oscillators.

The CCCIIz is characterised by the terminal equations:
I, =0, V, =V, + R and I, = +I, where R, = V; /2l
and is, therefore, electronically-controllable through the
external dc bias current Ig.

The basic state-variable methodology to synthesize
sinusoidal oscillators providing independent controls of
FO and CO, as proposed in [5], can be reiterated as
follows:

A canonic second-order (i.e. employing only two
capacitors) oscillator can be characterized by the
following autonomous state equation;

{Xl}:{an 312”:)(1} )
%o a1 ax [ X
From the above, the characteristic equation (CE)
2
s°—(ay1 +ag ) s+ (A118p2 —812821) =0 )
gives the CO and FO as
(a11+a22):O (3)
and
2
@y = (811897 — 812871 ) )

The state variable synthesis methodology [5] involves,
an a priori selection of the parameters a;,i=1,2;
j=1,2, in accordance with the required features
(e.g. independent control for CO and FO through separate

resistors), conversion of the resulting state equations
into the node equations (NE) and finally, constructing a
physical circuit from these NEs by using the chosen active
building block and RC elements.

In the following, we choose the same types of matrices
as introduced in [5,6,7], but employ the intrinsic input
resistances R, of the CCClIs instead of the external
resistors and demonstrate how a class of new
electronically-controlled oscillators, not known earlier,
can be systematically synthesized using this approach.

It must be kept in mind that in all the circuits derived in
the following, the resistors R,;, Ry, and R,z are not the
physical resistors but the intrinsic X-port input resistances
of the CCClls employed which are electronically-controllable
by respective external dc bias currents.

In the following, we first show the synthesis of one
exemplary circuit explicitly and subsequently, the remaining
types of [A] matrices suitable for the present purpose,
along with the synthesized CCCll-based oscillators
resulting therefrom and their COs and FOs would be
presented directly in tabular form to conserve space.

For the realization of a current-controlled oscillator
providing independent controls of both CO and FO, and
following the ideas contained in [5,6,7], let us choose the
elements of the [A] matrix as:

itL"LJ_LLL%LFJJ
C1 Rxl Rx3 C1 Rxl Rx2 Rx3 (5)

1 3 1
CoRy3 CoRy3

[A]=

From Eqn. 5, the characteristic equation of the
oscillator, having [A] matrix as above, is given by

32—[ t 1 1 js+ L =0 (8
CiRy CiRyz  CRy3 CiCoRy2Rx3

from where the CO and FO are found to be:
icj{&ﬂj 7
and

f (8

0= T ——
27,JC1CoRyoRy3

Thus, as intended, indeed, CO and FO both are
independently controllable without affecting each other;
the former by R, and the latter by R,,.

Now, substituting eqn. (5) in (1), the resulting NEs can
be written as

o % e XX %X ©
dt Rx2 I:2x3 Rxl
dx X — X
e B k. (10)
dt Ry3

By using NEs (9) and (10), a physical oscillator circuit
is synthesized as shown in Figure 1, wherein the
construction of the circuit can be understood by observing
the various currents marked on the diagram itself.
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Figure 1. A new oscillator circuit realized by using NEs (9) and (10)

Table 1. Various choices of the elements of the matrix [A] which lead to independent controls of CO and FO both

No. The selected elements for [A] matrix CO FO
1 ( 1 1 ) 1 ( 1 + 1 1 )
N Ci\Ryy Rys) G \Ry Ry, R 1 =L(ﬂ+ 1) L
1 _ 1 Rya Ra\G 21\ C1C3 R Ry3
CZRXS CZRXS
1 ( 2 1 ) 1 ( 2 + 1 1 )
) Ci\Ryq R/ Ci\Ru Ryo Ry 2 _ 1 (ﬂ +1) 1
; _; Rxl Rx3 CZ 27'[1/C1C2RX2RX3
CZRx3 CZRx3
1 ( 1 1 ) 1 ( 1 + 2 1 )
N G\Ra Ra) TG \Ra TR.Rg Lo L) 2
1 _ 1 Ry R \G 2m\/CiCoR R 3
CZRXS CZRXS
r 1 ( 2 + 1 )
"CGR. G\R, R 1
4. 10x1 1 x1 x2 C.R =2C,R -
3 1 1 1M1 20x3 2 /—ClcszzRﬁ
o CZRx3 CZRx3
r 2 1 ( 2 + )
5 CiRu G \Ry Rq CR = 2C.R _
1 3 1 17x1 20%%3 27 IC1Cszsz3
»CZRxS CZRx3 -
r 1 1/1 2 )
6. Clel Cl Rxl RxZ C.R =C,R \/z
1 1 101 2M%x3 o (—Clcszszg
-CZRx3 CZRx'i
1 1 ( 1 1 1 )
7 CiRs  Ci\Ryy R R 1 _1 (g +1) 1
1 _i<i_ 1) Ry Ry \G 21 JC,C,RaRes
CZRXS CZ Rxl Rx3
[1 2 1/2 1 ] 2 1 /¢ 1
AV A R ) -aoe-1)+ !

8. | 1 x1 x2 x3 1 x1 x2 Rxl sz Cz Rx3 [
| 1 [ (with C;=C,=C, one needs 21/C,C,R 2R 3
| [ GR, | Ra=2Ry;)

1
0
9 CiR; R —R _
' —_ 1 i( 1 _L) X1 3 2m\/C1CR 2R3
CZRx3 CZ Rx31 Rxl
0 —
10 CleZ R =R ;
. ; — l (L — L) ﬂ 3 2m\/C1 G R R, 3
CZRx3 CZ R Rxl
r 1 1 ( 1 + 1 )
1 CiRyi Ci\Ryy ' Ry CR = CR _
. 3 1 1 10%x1 203 27 IC1Cszsz3
L CZRx3 CZRx3
1 1/1 1 )
CR, G \R, R 1
12. 1x1 1 X x2 C.R =C,R -
10x1 20%x3 2 ICICZRXZRXS
-CZRx3 CZRx3
'1(1+1 1) 1<1+1)' 1 1 1
13 Cl Rxl RxZ Rx3 Cl Rxl Rx2 R = R (C_l - 1) + R ;
: x1 x2 2 x3
- ! ! with C1=C2=C, RxlzRXS 27TV C1C2Rx2Rx3
CZRxZ CZRxZ
'1(1+1 1) 1(1+1)' 1 1 c 1
14 Ci\Ry1 Ry R Ci\Ry1 Ry R :R_(C_l_ 1)+R_ ;
. x1 x2 2 x3
L __r With C1=C,=C, Rx=Rys 2y C1CoR R
CZRxZ CZsz
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Since the CO is controllable by R,; while FO is A X X (Xo-X)
independently controlled by R,, it follows that CO is ClWJFR_JrR_ ST R. (17a)
electronically-controllable by lg; whereas the FO is also XL X2 X3
independently electronically-controllable by Ig,. dx Y — X X

In Table 1 we now show the fourteen possible choices Czd—f=¥+R—2. (17b)
of the matrices [A] which lead to independent controls of x3 x1
both CO and FO. These matrices have been constructed on The NEs from [A] matrix 8
the basis of those given in [5,6,7] but here we have used the
intrinsic resistances R,;; i=1-3 of the CCCllIs rather than Q%Jri: 2(X1—X2)Jr (4 -%) (182)
any external resistors. The Table 1 also shows the CO and dt Ry Ry Ry2
FO of the synthesized oscillators which result from these
matrices using the methodology as explained in the above c dﬁ _ (X1 - Xz) (18b)
example. 2 dt R

We can now write the following node equations )
resulting from the chosen 14 matrices of Table 1. The NEs from [A] matrix 9

The NEs from [A] matrix 1 dy %

—1= (192)
X — X X — X
Cldditl+|;(—2+( 1R 2) _( 1R 2) (11a) dt Re
2 3 X1
x X ZdﬁJrX_Z:_(X?"Xl)_ (19b)
X — X
czddﬁz—( 1=%) (11b) @ Ra R
t Rxs The NEs from [A] matrix 10
The NEs from [A] matrix 2 dx X
dy X  (—%) 2(x—X) 1d_t1:_R_2 (202)
Cld_s-+R_2+ = = R (123.) X
X2 X3 x1
X — X
c, e (%) X (20b)
c, ¥ _(u-%) (12b) dt Rys Rua
dt Ry3 The NEs from [A] matrix 11
The NEs from [A] matrix 3 X — X
dx, 2 (X —=%) (X—Xp) Cl%:( 2R 1)+F:_2 21a)
C1%+R—X2+ 1R 2/ - 1R 2 (13a) - x2
X2 X . C, 9% _ M (21b)
X — X
c, e _(u=x) (13b) @R
dt R The NEs from [A] matrix 12
The NEs from [A] matrix 4 Y — X
oo 200 o, 2 (a) (220)
1%:—& 1 +F:(_2 (14a) X2 Xl
x1 X2 Zdﬁ:(xl—xz)l (22)
X9 — X
c, P _e=x) (14b) @ Ra
dt R The NEs from [A] matrix 13
The NEs from [A] matrix 5 Xy — X Xo — X
Cldﬁ:( 2 1)+( 2 1)+i (23a)
1%4_;_2: 2(X]F_Q—X2) (15a) dt RXl sz RX3
x2 . ) 9% _ M (23b)
X{ — X
o _ (%) (15b) dt Ry
dt Ry3 The NEs from [A] matrix 14
The NEs from [A] matrix 6 g x (a—%) (a-%)
C—+—= + (24a)
3 %_’_Eﬁ _ (XlR_ X2 ) (162) dt Rx3 Rxl Rx2
X2 x ) 9% _ M (24b)
X — X
C dx _ M (16b) dt Rx2

2
dt R The oscillators synthesized from the above 14 sets of
The NEs from [A] matrix 7 node equations are shown in Figure 2 — Figure 5. The CO
and FO would be as already given in Table 1.
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Figure 2. New oscillator circuits realized by using NEs (11) to (14)
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Figure 3. New oscillator circuits realized by using NEs (15) to (18)

[N | T

x@z x@ﬂ MHY@L X

[ I
) 1 1

e L [ |

X o= X oz x4 % @7_-

=7 I/ =L
: ] 1

i

¥ I.'“

X Z- x 7-
Y ®Z X Oz y ®2 X
) J._ ) .
|_ —| =C, TGz
Ji 1
[
llﬁ‘l Llﬂﬂ t llﬁa
L[ = Y Y z X
x@]z x@lz-_x1 x@z
| : J,_ _|
R
da

Figure 4. New oscillator circuits synthesized from the NEs (19) to (22)
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Figure 5. New oscillator circuits synthesized from the NEs (23) and (24)
It may be mentioned that although three-CCClI-based 2
h . - : - . 2Jn(1+u
oscillators possessing the intended properties mentioned in d 3 ©7)
the Introduction, have been reported earlier also in references Ew(u) B

[24,25,27,37] none of the fourteen topologies presented
here have been known earlier and hence, are completely new.

3. Frequency Stability and Sensitivities

Frequency stability is an important figure of merit
on the basis of which different sinusoidal oscillators
can be compared. We use the definition of frequency

dq)—(u) , Where u =2 s the
du et g

normalized frequency and ¢(u) represents the phase of

the open loop transfer function of the oscillator circuit.
Here we show the derivation of S¥for the circuit of

Figure 1. The open loop transfer function (with the link

broken at point ‘P’ as shown in Figure 1) is found to be:

T(s)= Jout

Iin

stability factor as S© =

s
CiRy
2 S S 1
s<+ + +
CiRys  CoRys  CiCoRyoRy3

(25)

Thus, from Eqgn. (25), the phase of the T(s) with the
selection of component values as C;=C,=C, 2R,;=R,s=Ry
and R,,=R,/n, is given by:

(01+7)

——=—tan

-1 ZU\/H
(1—u2)n '

Now, differentiating Eqn. (26) with respect to u, we get

p(u)=tan~ (26)

5 .
n(l—uz) +4u2

From (27) the value of S" for this particular oscillator
with u=1, is obtained to be

st =un. (28)

Thus, the current-controlled oscillator of Figure 1 offers
very good frequency stability factor for large values of n.
By a similar analysis, it is found that the magnitude of
SFis v/n for oscillator 7 also whereas for all the remaining
oscillators, S¥is found to be 2y/n. Thus, all the new
oscillators enjoy excellent frequency stability properties.

On the other hand, the sensitivity of w, with respect to

Ry; i=1-3 and the capacitances are found to be
Se) =8¢ =Sp =58% =% and Sg° =0, which

shows that all the oscillator circuits of Figure 2 to Figure 5
also enjoy very low sensitivity properties.

4. SPICE Simulation Results

To check the workability of the synthesized new
current-controlled oscillator circuits, SPICE simulations
have been performed using the bipolar transistor parameters
of PR100N (PNP) and NR10ON (NPN) transistors [41].
All the circuits realized using MO-CCCII have been simulated
in SPICE using the structure of the MO-CCCII shown in
Figure 6, which is obtained by suitably augmenting the
architecture proposed by Yuce, Kircay and Toker in [42].
The capacitor values used were C;=C,=100nF and the CO
was adjusted through the variation of R,; which is a
function of the bias current lg;. The FO was varied through
the change of R,, which is a function of the bias current
Iz, and the value of R,; was fixed through Igs. The three
MO-CCClIs were biased with £2.5V DC power supplies.

07+

0+VCC
e e e S e )
QQ Q  Q Qe

Q7+
2+

Q Q Q Q Q
Qu o? ﬁ ° w = w v ﬁ% Q? w - ﬁ - ﬁQﬂ
0 Ve

Figure 6. MO-CCCII internal structure obtained by suitable augmentation of the circuit of [42]
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c

Figure 7. The variation of oscillation frequency with respect to bias current for the oscillator circuit of Figure 5(b) (a) Transient response (b) Steady
state response (C1=C,=100pF, lg;=2.086A, lg;=12.83pA and lgz=1.34A) and (c) variation of FO w.r.t. lg,

The SPICE generated transient and steady state waveforms
and the variation of FO w.r.t. Iz, were studied for all the
fourteen oscillator circuits. With the exception of the
circuit of Figure 4a which was found to be in latch-up?, all
other circuits behaved as predicted by the theory.

To conserve space, we show here the simulation results
only for the oscillator circuit of Figure 5(b). The output
waveforms are shown in Figure 7(a) and Figure 7(b)
whereas the variation of oscillation frequency w.r.t. lg, is
shown in Figure 7(c) by varying lg, from 0.513pA to
115.47pA corresponding to which f, was found to vary
from 99.965 kHz to 1500.00 kHz. The circuit exhibited
excellent correspondence between lg, and f,. The % total
harmonic distortion (THD) in the generated waveform, at
the frequency of 499.95 kHz, was found to be 3.55%. The
workability of the oscillator circuit of Figure 5(b) is, thus,
established by these simulation results.

5. Comparison with Earlier Known
CCClI-based Oscillators

A comparison of the generated new oscillator circuits
with those previously reported in [23-39] is shown in

! The study of latch-up behavior in CCCll-based oscillators is, as yet,
unstudied phenomenon and constitutes an interesting problem for further
research.

Table 2 from where it is revealed that oscillators of
[23,29] suffer from the drawback of employing dissimilar
type of active elements; those in [34,36,39] use more
than three active elements; those in [28,30,31,32,35,38]
employ less than three CCClls but do not possess
independent controls of both CO and FO. It turns out that
only the earlier circuits of [24,25,27,37] use only three
CCClls and two grounded capacitors, however, none of
the 14 oscillators presented here are found to exist in
any of these earlier works [24,25,27,37] and hence, are
completely new.

From the data given in seventh column of Table 2, it is
revealed that the new circuits appear to have an edge over
the quoted ones in terms of their comparatively larger
frequency range of operation 100 kHz-1.5 MHz.

Table 3 shows the operating frequency ranges and the
% THD for all the fourteen synthesized oscillator circuits.
From the data of all the 14 new circuits, it is found that
comparatively, the circuit of Figure 5(b) appears to be the
best in terms of largest possible tuning range, low THD
and high SF.

It may be mentioned that like the three CCCll-based
oscillators of [37] which are realised by using a CMOS
CCCIl architecture implementable in 0.35um CMOS
technology, the circuits of this paper can also be
implemented with any chosen CMOS CCCII structure
since the kernel of the work reported here is not dependent
on the technology used.
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Table 2. Comparison of the synthesized new oscillators with the previously published CCCll-based Oscillators
Number and Whether Does the circuit Whether CO
same type Whether the Power
type of L employ two L and FO are Technology
Ref. No. e of building circuit is external . Frequency range supply
building blocks grounded resistor-less? independently used used
blocks used used? capacitors? ' adjustable?
2 CCCl|,
[23] 1 Current No Yes Yes No 1 kHz-3000 kHz +2.5V Bipolar
Mirror
[24] 3CcCcCll Yes Yes Yes Yes - +2.5V Bipolar
1 MOCCCIll, .
[25] 2 CCCll+ Yes Yes Yes Yes 25 kHz-900 kHz +2.5V Bipolar
2 CCClI+, .
[26] 1 CCCll- Yes Yes No (1 grounded) Yes 3 kHz-1000 kHz +2.5V Bipolar
[27] PP Yes Yes Yes Yes 37KHz-375kHz | +25V | Bipolar
1 CCCll+, .
[28] 1CCCll- Yes Yes Yes No 1 kHz-100 kHz +5V Bipolar
1 MOCCCIll, No
[29] 1 CCCll+, No (1 Floating) Yes No - +2.5V Bipolar
1CCliz 9
1 MOCCCIll, .
[30] 1¢ccen Yes Yes Yes No 212 kHz +2.5V Bipolar
1 MOCCCIl|, .
[31] 1Co0ll Yes Yes Yes No 212 kHz +2.5V Bipolar
[32] 2 MOCCCII Yes Yes Yes No - +2.5V Bipolar
2 CCCII(-IR) Yes Yes Yes No 80 kHz-120 kHz +2.5V Bipolar
[33] 1 CCCIl+, .
1CCCll- Yes Yes Yes No 90 kHz-110 kHz +2.5V Bipolar
1 0TA, 200 kHz-1000 .
[34] 4 MOCCCHI No Yes Yes Yes KHz +2.5V Bipolar
No 45nm
[35] 1 CCCll+ Yes (1 Floating) No,(1 grounded) No - +1.0V CMOS
No (1 grounded :
5 CCCl+ Yes No (1 Floating) and No 358MHz-5712 | gy | O18um
. MHz CMOS
1 floating)
[36] No (1 grounded
3 CCClI+, . 470 MHz-694 0.18um
2 CCClI- Yes No (1 Floating) anq No MHz +1.0V CMOS
1 floating)
0.35pum
[37] 3 MOcCccCll Yes Yes Yes Yes 420 kHz-660 kHz | 2.5V CMOS
1 CCClI+, 0.35pum
[38] 1CCCll- Yes Yes Yes No - +1.25V CMOS
3 CCClI+, .
[39] 1 CCClI- Yes Yes Yes Yes - +2.5V Bipolar
Proposed | 3 MOCCCII Yes Yes Yes Yes 100 klr'l—lzz-1500 +2.5V Bipolar

‘-*: means the relevant information is not available, CCII: Second generation current conveyor, CCCII: Second generation current controlled conveyor,
CCCII (-IR): negative intrinsic resistance CCCIl, MOCCCII: Multiple output second generation controlled current conveyor, OTA: operational trans-
conductance amplifier.

Table 3. Comparison of operating frequency range and % THD for
the fourteen synthesized oscillators

S. No. Frequency Range (kHz) THD (%)

1. 100 - 900 3.972 (500.05kHz)
2. 200 -900 4.11 (500.00kHz)
3. 100 - 800 3.374 (499.95kHz)
4, 74 — 390* 5.576 (357.3kHz)
5. 400 - 600 1.713 (500.05kHz)
6. 300 -500 2.186 (504.9kHz)
7. 300 - 800 3.843 (500.00kHz)
8. 400 - 1400 4.802 (499.85kHz)
9. - -

10. 200 - 500 3.119 (527.6kHz)
11. 69 — 374* 4.856 (327kHz)
12. 300 -500 2.046 (500kHz)
13. 138 — 209* 6.82 (209.9kHz)
14. 100 - 1500 3.55 (499.95kHz)

*-*: the circuit exhibited latch-up.

Thus, the CCCll-based new oscillator circuits
synthesized and reported in this paper compare well with
the CCCll-based oscillators previously reported in [23-40].

6. Concluding Remarks

Fourteen new electronically-controllable sinusoidal
oscillator circuits have been synthesized by using the
state-variable approach of [5,6,7]. All the fourteen circuits
have employed only three MO-CCCllIs and two grounded
capacitors. The derived oscillator circuits provide the following
desirable properties simultaneously: (i) employment of similar
types of building blocks (ii) use of only three active
elements (iii) availability of independent electronic controls
of the FO and CO bhoth (iv) complete elimination of external
passive resistors and (v) the use of both grounded capacitor,
as preferred for IC implementation. The workability of the
proposed circuits has been verified by PSPICE simulations




and
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some sample simulation results were presented.

This paper has, thus, added 14 new oscillator structures

to

the

existing repertoire of three CCClI-based

electronically-controllable oscillators of [24,25,27,37].
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